對於考研數(shù)學(xué),第一遍復(fù)習(xí)的時候,需要認真研究各種題型的求解思路和方法,做到心中有數(shù),同時對自己的強項和薄弱環(huán)節(jié)有清楚的認識,第二遍復(fù)習(xí)的時候就可以有針對性地加強自己不擅長的題型的練習(xí)了,經(jīng)過這樣兩邊的系統(tǒng)梳理,接下來小編在這裡給大家?guī)砜佳袛?shù)學(xué)三復(fù)習(xí)心得,希望對你有所幫助!
考研數(shù)學(xué)三復(fù)習(xí)心得1
考研高等數(shù)學(xué)導(dǎo)數(shù)解題的重點
第一,理解并牢記導(dǎo)數(shù)定義。導(dǎo)數(shù)定義是考研數(shù)學(xué)的出題點,大部分以選擇題的形式出題,01年數(shù)一考一道選題,考查在一點處可導(dǎo)的充要條件,這個并不會直接教材上的導(dǎo)數(shù)充要條件,他是變換形式后的,這就需要同學(xué)們真正理解導(dǎo)數(shù)的定義,要記住幾個關(guān)鍵點:
1)在某點的領(lǐng)域范圍內(nèi)。
2)趨近于這一點時極限存在,極限存在就要保證左右極限都存在,這一點至關(guān)重要,也是01年數(shù)一考查的點,我們要從四個選項中找出表示左導(dǎo)數(shù)和右導(dǎo)數(shù)都存在且相等的選項。
3)導(dǎo)數(shù)定義中一定要出現(xiàn)這一點的函數(shù)值,如果已知告訴等于零,那極限表達式中就可以不出現(xiàn),否就不能推出在這一點可導(dǎo),請同學(xué)們記清楚了。
4)掌握導(dǎo)數(shù)定義的不同書寫形式。
第二,導(dǎo)數(shù)定義相關(guān)計算。這里有幾種題型:1)已知某點處導(dǎo)數(shù)存在,計算極限,這需要掌握導(dǎo)數(shù)的廣義化形式,還要注意是在這一點處導(dǎo)數(shù)存在的前提下,否則是不一定成立的。
第三,導(dǎo)數(shù)、可微與連續(xù)的關(guān)系。函數(shù)在一點處可導(dǎo)與可微是等價的,可以推出在這一點處是連續(xù)的,反過來則是不成立的,相信這一點大家都很清楚,而我要提醒大家的是可導(dǎo)推連續(xù)的逆否命題:函數(shù)在一點處不連續(xù),則在一點處不可導(dǎo)。這也常常應(yīng)用在做題中。
第四,導(dǎo)數(shù)的計算。導(dǎo)數(shù)的計算可以說在每一年的考研數(shù)學(xué)中都會涉及到,而且形式不一,考查的方法也不同。
要能很好的掌握不同類型題,首先就需要我們把基本的導(dǎo)數(shù)計算弄明白:
1)基本的求導(dǎo)公式。指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)和反三角函數(shù)這些基本的初等函數(shù)導(dǎo)數(shù)都是需要記住的,這也告訴我們在對函數(shù)變形到什么形式的時候就可以直接代公式,也為后面學(xué)習(xí)不定積分和定積分打基礎(chǔ)。
2)求導(dǎo)法則。求導(dǎo)法則這里無非是四則運算,復(fù)合函數(shù)求導(dǎo)和反函數(shù)求導(dǎo),要求四則運算記住求導(dǎo)公式;復(fù)合函數(shù)要會寫出它的復(fù)合過程,按照復(fù)合函數(shù)的求導(dǎo)法則一次求導(dǎo)就可以了,也是通過這個復(fù)合函數(shù)求導(dǎo)法則,我們可求出很多函數(shù)的導(dǎo)數(shù);反函數(shù)求導(dǎo)法則為我們開辟了一條新路,建立函數(shù)與其反函數(shù)之間的導(dǎo)數(shù)關(guān)系,從而也使我們得到反三角函數(shù)求導(dǎo)公式,這些公式都將要列為基本導(dǎo)數(shù)公式,也要很好的理解并掌握反函數(shù)的求導(dǎo)思路,在13年數(shù)二的考試中相應(yīng)的考過,請同學(xué)們注意。
3)常見考試類型的求導(dǎo)。通常在考研中出現(xiàn)四種類型:冪指函數(shù)、隱函數(shù)、參數(shù)方程和抽象函數(shù)。這四種類型的求導(dǎo)方法要熟悉,并且可以解決他們之間的綜合題,有時候也會與變現(xiàn)積分求導(dǎo)結(jié)合,94年,96年,08年和10年都查了參數(shù)方程和變現(xiàn)積分綜合的題目。
第五,高階導(dǎo)數(shù)計算。高階導(dǎo)數(shù)的計算在歷年考試出現(xiàn)過,比如03年,07年,10年,都以填空題考查的,00年是一道解答題。需要同學(xué)們記住幾個常見的高階導(dǎo)數(shù)公式,將其他函數(shù)都轉(zhuǎn)化成我們這幾種常見的函數(shù),代入公式就可以了,也有通過求一階導(dǎo)數(shù),二階,三階的方法來找出他們之間關(guān)系的。這里還有一種題型就是結(jié)合萊布尼茨公式求高階導(dǎo)數(shù)的,00年出的題目就是考察的這兩個知識點。
考研數(shù)學(xué)三復(fù)習(xí)心得2
考研數(shù)學(xué)重點歸納的題目解法
一、數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。
二、微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。
六、積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒設(shè)計到,所以要重點關(guān)注。
考研數(shù)學(xué)做題練習(xí)需遵循的原則
1.思考著去做題,去總結(jié)
很多學(xué)生都有這樣的困惑,做了很多題但不會的題還是很多,最可氣的就是很多題明明做過,但是再遇到還是不會做!這就是很多同學(xué)存在的通病,不求甚解??傄詾椴粫隽?,看看答案就會了,并不會認真的思考為什么不會,解題技巧是什么,和它同類型的題我能不能會做等等。其實,這些都是很重要的,提醒大家要學(xué)著思考,學(xué)著“記憶”,最重要是要會舉一反三,這樣,我們才能脫離題海的浮沉,能夠做到有效做題,高效提升!
2.側(cè)重基礎(chǔ),培養(yǎng)逆向思維
很多時候,備考者會陷入盲目的題海中,這也是很多考生對數(shù)學(xué)感到頭痛的原因所在。其實在前期復(fù)習(xí)知識點的時候,就應(yīng)該把定義、定理的推導(dǎo)作為一個重點內(nèi)容,重視推導(dǎo)和例題中的方法與技巧,認真分析這些方法,將它們套用到相應(yīng)的練習(xí)題中,比做大量的重復(fù)練習(xí)要高效得多。
同時,思維習(xí)慣大大影響著學(xué)習(xí)效果。當(dāng)進入考研數(shù)學(xué)復(fù)習(xí)備考的時候,大多數(shù)人繼承了以往學(xué)習(xí)的習(xí)慣,思維也基本上定型了,也就是進入了定勢思維。習(xí)慣性思考方式在一方面有優(yōu)勢,另一方面也制約著學(xué)習(xí)成績的提高,我們現(xiàn)在要做的就是打破慣性思維!
3.做題有始有終,提高計算能力
數(shù)學(xué)不等于做題,但是不可避免的是學(xué)好數(shù)學(xué)一定要做題,那么如何做題?我們說基礎(chǔ)的扎實鞏固是根本,再這個基礎(chǔ)上進行做題。同時,提醒大家的是復(fù)習(xí)一定要養(yǎng)成一個好的習(xí)慣,拿到的數(shù)學(xué)題一定要有始有終把它算出來,這是一種計算能力的訓(xùn)練,尤其是計算量大的時候,如果沒有平常這樣一個訓(xùn)練,在實際考試的時候在短時間內(nèi)是很難心有余力也足的。
4.深入思考,善于總結(jié)
考試里不僅僅是考察我們基本概念、基本理論、基本方法的問題,還涉及到我們靈活運用知識的能力問題,所以僅僅是依靠教材很難把它這種考試命題的特點歸納總結(jié)出來,因此要了解考試,歷年考試的真題作為準(zhǔn)備去參加研究生考試的同學(xué)是必備的。
大家選真題的時候應(yīng)該考慮到能不能通過真題的分析幫助我們真正的歸納總結(jié)這樣一些題型出來,針對每一個問題我們應(yīng)該如何去分析和討論在分析討論過程中間,有沒有一些可能的變化情況,這些變化情況到現(xiàn)在為止,考到了哪一些,那一些就是我們下一步復(fù)習(xí)應(yīng)該注意的,這樣每一部分你都能夠這樣去歸納、總結(jié)或通過這種相關(guān)的輔導(dǎo)書幫助你歸納總結(jié)出來了,復(fù)習(xí)就更有針對性。
5.揣摩真題,把握方向
真題的作用是不容忽視的,經(jīng)過十幾年的考試,相當(dāng)多的題目模式已經(jīng)定了下來,很多考研題目都是類似的。考研真題經(jīng)過千錘百煉,在思想性上有較高的參考價值,需要多加揣摩。尤其是近兩年的考題,反映了命題者出題的方式和思路,更要注意。所以,同學(xué)們一定要把真題重視起來!
考研數(shù)學(xué)三復(fù)習(xí)心得3
考研數(shù)學(xué)概率滿分的復(fù)習(xí)建議
一、仔細分析考試大綱,抓住重點。
考試大綱是最重要的備考資料,雖然20__年的考試大綱還沒有出,不過從歷年的數(shù)學(xué)大綱來看,每年基本上沒有變化,所以大家可以先參考20__年考研數(shù)學(xué)大綱,將大綱中要求的內(nèi)容仔細梳理一下,在復(fù)習(xí)過程中一定要明確重點,對于不太重要的內(nèi)容,如古典概型,只要求掌握一些簡單的概率計算即可,不需要在復(fù)雜的題目上投入太多精力。
而對于概率的重點考查對象一定要重視,例如,隨機變量函數(shù)的分布基本上每年都會以解答題的形式考查,其中離散型隨機變量函數(shù)的分布是比較簡單的,連續(xù)型隨機變量函數(shù)的分布是考試頻率最高的,也是較難的一類題目,在利用分布函數(shù)法求概率密度函數(shù)過程中,如何正確尋找分段點以及確定積分上下限是正確解決這類問題的關(guān)鍵,所以平時復(fù)習(xí)要加強這類題型的訓(xùn)練,一個離散型一個連續(xù)型隨機變量函數(shù)的分布,求最大值、最小值函數(shù)的分布考頻也是比較高的。
另外,二維連續(xù)型隨機變量的邊緣分布、條件分布也是考試的重點,大家在復(fù)習(xí)過程中一定要深刻理解他們的定義和計算方法。隨機變量的分布還經(jīng)常與數(shù)字特征結(jié)合出題,所以數(shù)字特征也是概率的一大重點,但往往考生對于這部分知識掌握的不好,失分現(xiàn)象嚴重,所以要求大家復(fù)習(xí)時要靈活應(yīng)用數(shù)字特征相應(yīng)的計算公式及性質(zhì)。數(shù)理統(tǒng)計中,參數(shù)估計的矩估計法和最大似然估計法及驗證估計量的無偏性也是解答題中經(jīng)??疾榈闹R點,大家復(fù)習(xí)過程中要特別重視。
二、加強對基本概念、基本性質(zhì)的理解。從歷年試題看,概率論與數(shù)理統(tǒng)計這部分內(nèi)容主要考查考生對基本概念、原理的深入理解以及分析解決問題的能力,需要考生能夠做到靈活地運用所學(xué)的知識,建立起正確的概率模型去解決概率問題。所以大家在復(fù)習(xí)過程中要準(zhǔn)確理解概率論與數(shù)理統(tǒng)計中的基本概念,基本性質(zhì),為了深刻記憶,我們可以結(jié)合一些實際問題去理解,只要概念和公式理解準(zhǔn)確到位,并且多做些相關(guān)題目,考試時碰到類似題目就一定能夠輕松正確解答。
基礎(chǔ)知識的復(fù)習(xí)主要是在基礎(chǔ)階段進行,不要輕視對教科書中一般習(xí)題的練習(xí),一定要配合各章節(jié)內(nèi)容做一定數(shù)量的習(xí)題,總結(jié)一般題型的解題方法與思路。在此過程中,不要過多地去追求難題、技巧,要腳踏實地、全面仔細地復(fù)習(xí),凡是考綱上有的內(nèi)容,就不要遺漏。這個階段雖然涉及綜合性、提高性題型不多,但基礎(chǔ)打得好將為下階段全面綜合復(fù)習(xí)創(chuàng)造一個有利前提,而且,試卷中多數(shù)綜合性、靈活性強的考題,其關(guān)鍵之處也在于考生是否能夠適當(dāng)運用有關(guān)的基本概念、理論和方法。
三、重視真題的訓(xùn)練
真題是最具有代表性的資料,因為概率統(tǒng)計考試內(nèi)容和技巧比較單一,變化相對較少,所以在考研真題題型中的重復(fù)率可以達到90%,因此我們要加強對歷年真題的重視,尤其是近十年的真題,總體來講,做真題可以分兩步:
第一步,做套題,這樣一是可以檢驗復(fù)習(xí)的水平,發(fā)現(xiàn)概念和內(nèi)容上不熟悉的地方,另外為真正的考試積累經(jīng)驗;
第二步,按照章節(jié)分類解析,在第一步基礎(chǔ)上,有些題目有可能會做錯,把它們記下來,在進行各個章節(jié)專題訓(xùn)練時,,強化知識和方法。
最后,把近十年的真題再研究一下,弄清楚??嫉氖悄男﹥?nèi)容,把考試題型徹底熟悉,并且要會正確解答。一定不要過多的花時間去理解其它無關(guān)或者非重點內(nèi)容。
四、回顧知識點,進行適當(dāng)?shù)哪M訓(xùn)練
最后沖刺階段,需要回歸教材,把課本再認真看一遍,查遺補漏,將知識條理化、系統(tǒng)化。另外,可以做幾套模擬試卷。從知識點到做題思路,解題技巧,答題順序等各個方面進行強化訓(xùn)練,千萬不能做太難太偏的模擬題,不然會做無用功,甚至對考試失去信心,也起不到鍛煉的價值??记皟商鞂⒅匾交仡櫼槐?。通過完整的復(fù)習(xí),形成最終的競爭力,考出最好的成績。
考研數(shù)學(xué)三復(fù)習(xí)心得4
考研數(shù)學(xué)高數(shù)復(fù)習(xí)強化各方面能力的指導(dǎo)
1.重視基礎(chǔ)內(nèi)容適應(yīng)難度轉(zhuǎn)變
考研數(shù)學(xué)23道題目,70%的題目都是基礎(chǔ)題,包括基本概念、基本理論和基本方法?;靖拍钣袠O限、連續(xù)、間斷點、可導(dǎo)、可微、漸近線、拐點、可積等等;基本理論有單調(diào)有界準(zhǔn)則、夾逼準(zhǔn)則、閉區(qū)間連續(xù)函數(shù)的性質(zhì)、微分和積分中值定理等等;基本方法有極限的四則運算法則、羅必達法則求不定式極限、冪級數(shù)的求和、函數(shù)的冪級數(shù)形式展開、常見微分方程的解法等等。從近十年考研數(shù)學(xué)真題來看,幾乎沒有出現(xiàn)過偏題、怪題,基本上都是以常規(guī)題目考查為主的。
2.提高解題和運算的熟練度
考研數(shù)學(xué)中80%的題目都是計算題,這就要求你的計算能力一定要過關(guān),否則即使這道題目你有完整的思路,但是計算過程出現(xiàn)失誤,也會導(dǎo)致你最后的結(jié)果是錯誤的,數(shù)學(xué)拿不到高分。有些同學(xué)學(xué)習(xí)數(shù)學(xué)時容易出現(xiàn)眼高手低的壞毛病,一看題目,覺得題目不難,自己不用筆進行計算解答,直接看答案,這樣的復(fù)習(xí)是不會有進步的。再次強調(diào)復(fù)習(xí)時一定要多動手,多思考。
3.做好知識點歸納與總結(jié)
同學(xué)們每做一道題目的時候,都要從兩方面進行分析:一是,這道題的考點是什么?以及同類型題目該如何求解。二是,通過做這道題目,對你而言具有價值有哪些?比如對知識點有更深的理解、掌握了一種解題技巧等。每做完一道題目,一定要明白其解題思路,對于解題過程中所用到的方法、技巧要進行歸納總結(jié),如求極限、微分中值定理的應(yīng)用、二重積分的計算等等,切記不能因題而做題,我們做題是為了提高自己的知識層次和解題能力。
考研數(shù)學(xué)三復(fù)習(xí)心得5
考研數(shù)學(xué)強化復(fù)習(xí)任務(wù)和做題技巧
在做題的時候,有意識地加強練習(xí)做題的感覺,對復(fù)習(xí)效果會事半功倍,在做題時可以從以下幾個方面入手:
第一,讀題
做題要從題目的敘述開始。拿到一個題目,做題的第一步是要仔細閱讀題目,把握題目的主要含義。閱讀題目直到即使不看題目,也能記住題目的意思。
第二,找出切入點
仔細考慮題目的各主要部分,將它們以不同的方式進行組合,再調(diào)動已有知識,尋求其與題目之間的聯(lián)系,試著認清題目中所隱含的你熟悉的東西。
第三,分析題目要求
分析下題目所求需要哪些條件,然后尋找這些條件與第二問找出的思路的關(guān)系,這樣就能找到解題點了!
如果你有意識地使用這種方式解題,那么一段時間過后,你會發(fā)現(xiàn)自己的解題能力、解題技巧、解題速度與正確性都會大大提高。
考研數(shù)學(xué)暑期需重點復(fù)習(xí)的知識點
1、兩個重要極限,未定式的極限、等價無窮小代換
這些小的知識點在歷年的考察中都比較高。而透過我們分析,假如考極限的話,主要考的是洛必達法則加等價無窮小代換,特別針對數(shù)三的同學(xué),這兒可能出大題。
2、處理連續(xù)性,可導(dǎo)性和可微性的關(guān)系
要求掌握各種函數(shù)的求導(dǎo)方法。比如隱函數(shù)求導(dǎo),參數(shù)方程求導(dǎo)等等這一類的,還有注意一元函數(shù)的應(yīng)用問題,這也是歷年考試的一個重點。數(shù)三的同學(xué)這兒結(jié)合經(jīng)濟類的一些試題進行考察。
3、參數(shù)估計
這一點是咱們經(jīng)常出大題的地方,這一塊對咱們數(shù)一,數(shù)二,數(shù)三的考生來講,包含兩塊知識點,一個是矩估計,一個是最大似然估計,這兩個集中出大題。
4、級數(shù)問題,主要針對數(shù)一和數(shù)三
這部分的重點是:一、常數(shù)項級數(shù)的性質(zhì),包括斂散性;二、牽扯到冪級數(shù),大家要熟練掌握冪級數(shù)的收斂區(qū)間的計算,收斂半徑與和函數(shù),冪級數(shù)展開的問題,要掌握一個熟練的方法來進行計算。對于冪級數(shù)求和函數(shù)它可能直接給咱們一個冪級數(shù)求它的和函數(shù)或者給出一個常數(shù)項級數(shù)讓咱們求它的和,要轉(zhuǎn)化成適當(dāng)?shù)膬缂墧?shù)來進行求和。
5、微分方程:一是一元線性微分方程,第二是二階常系數(shù)齊次/非齊次線性微分方程
對第一部分,考生需要掌握九種小類型,針對每一種小類型有不同的解題方式,針對每個不同的方程,套用不同的公式就行了。對于二階常系數(shù)線性微分方程大家一定要理解解的結(jié)構(gòu)。另一塊對于非齊次的方程來說,考生要注意它和特征方程的聯(lián)系,有齊次為方程可以求它的通解,當(dāng)然給出的通解大家也要寫出它的特征方程,這個變化是咱們這幾年的一個趨勢。這一類問題就是逆問題。
對于二階常系數(shù)非齊次的線性方程大家要分類掌握。當(dāng)然,這一塊對于數(shù)三的同學(xué)來說,還有一個差分方程的問題,差分方程不作為咱們的一個重點,而且提醒大家一下,學(xué)習(xí)的時候要注意,差分方程的解題方式和微方程是相似的,學(xué)習(xí)的時候要注意這一點。
6、隨機變量的數(shù)字特征
要記住一維隨機變量的數(shù)字特征都要記熟,數(shù)字特征很少單獨性考察,往往和前面的一維隨機變量函數(shù)和多維隨機變量函數(shù)和第六章的數(shù)理統(tǒng)計結(jié)合進行考察。特別針對數(shù)一的同學(xué)來說,考察矩估計和最大似然估計的時候會考察無偏性。
7、一維隨機變量函數(shù)的分布
這個要重點掌握連續(xù)性變量的這一塊。這里面有個難點,一維隨機變量函數(shù)這是一個難點,求一元隨機變量函數(shù)的分布有兩種方式,一個是分布函數(shù)法,這是最基本要掌握的。另外是公式法,公式法相對比較便捷,但是應(yīng)用范圍有一定的局限性。
考研數(shù)學(xué)三復(fù)習(xí)心得與技巧分享相關(guān)文章: