教案使教師能夠弄通教材內(nèi)容,準確把握教材的重點與難點,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。寫好初中數(shù)學(xué)教案范例大全是有技巧的,接下來給大家分享初中數(shù)學(xué)教案范例大全,方便大家學(xué)習(xí)。
一、教學(xué)案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學(xué)設(shè)計的區(qū)別
教案和教學(xué)設(shè)計都是事先設(shè)想的教學(xué)思路,是對準備實施的教學(xué)措施的簡要說明;教學(xué)案例則是對已經(jīng)發(fā)生的教學(xué)過程的反映。一個寫在教之前,一個寫在教之后;一個是預(yù)期達到什么目標(biāo),一個是結(jié)果達到什么水平。教學(xué)設(shè)計不宜于交流,教學(xué)案例適宜于交流。
3、案例與教學(xué)實錄的區(qū)別
案例與教學(xué)實錄的體例比較接近,它們都是對教學(xué)情景的描述,但教學(xué)實錄是有聞必錄,而案例則是有所選擇的,教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學(xué)案例的特點是
——真實性:案例必須是在課堂教學(xué)中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學(xué)案例的結(jié)構(gòu)要素
從文章結(jié)構(gòu)上看,數(shù)學(xué)案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關(guān)情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學(xué)校還是普通學(xué)校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉(zhuǎn)變學(xué)困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學(xué)生的獨立學(xué)習(xí)情況,等等?;蛘呤且粋€什么樣的數(shù)學(xué)任務(wù)解決過程和方法,在課程標(biāo)準中數(shù)學(xué)任務(wù)認知水平的要求怎么樣,在課堂教學(xué)中數(shù)學(xué)任務(wù)認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學(xué)校開展研究性學(xué)習(xí)活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應(yīng)該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學(xué)中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關(guān)鍵性的細節(jié)寫清楚。比如介紹教師如何指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的方法,就要把學(xué)生怎么從“不會”到“會”的轉(zhuǎn)折過程,要把學(xué)習(xí)發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學(xué)生學(xué)習(xí)行為,學(xué)習(xí)行為反映的學(xué)生思想、情感、態(tài)度寫清楚,或者把小組合作學(xué)習(xí)的突出情況寫清楚,或者把個別學(xué)生獨立學(xué)習(xí)的典型行為寫清楚。不能把“任務(wù)”布置了一番,把“方法”介紹了一番,說到“任務(wù)”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結(jié)果。一般來說,教案和教學(xué)設(shè)計只有設(shè)想的措施而沒有實施的結(jié)果,教學(xué)實錄通常也只記錄教學(xué)的過程而不介紹教學(xué)的效果;而案例則不僅要說明教學(xué)的思路、描述教學(xué)的過程,還要交代學(xué)生學(xué)習(xí)的結(jié)果,即這種教學(xué)措施的即時效果,包括學(xué)生的反映和教師的感受等。讀者知道了結(jié)果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學(xué)指導(dǎo)思想、過程、結(jié)果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎(chǔ)上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學(xué)困生轉(zhuǎn)化的事例,我們可以從社會學(xué)、教育學(xué)、心理學(xué)、學(xué)習(xí)理論等不同的理論角度切入,揭示成功的原因和科學(xué)的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學(xué)教學(xué)案例主題的選擇
新課程理念下的初中數(shù)學(xué)教學(xué)案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學(xué)生動手實踐、自主探究、合作交流的教學(xué)方式;
(2)體現(xiàn)教師幫助學(xué)生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗;
(3)體現(xiàn)讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋與應(yīng)用的過程,采用“問題情境——建立模型——解釋、應(yīng)用與拓展”的模式教學(xué)的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學(xué)與信息技術(shù)整合的教學(xué)方法;
(5)體現(xiàn)教師在教學(xué)過程中的組織者、引導(dǎo)者與合作者的作用;
(6)體現(xiàn)教學(xué)中對學(xué)生情感、態(tài)度的關(guān)注和評價,以及怎樣幫助不同的人在數(shù)學(xué)上獲得不同的發(fā)展,等等。
一、教材及學(xué)情分析
《二次函數(shù)的圖像與性質(zhì)》是北師大版九年級下冊第二章第二節(jié)的內(nèi)容,在學(xué)生已經(jīng)學(xué)習(xí)過一次函數(shù)(包括正比例函數(shù))、反比例函數(shù)的圖像與性質(zhì),以及會建立二次函數(shù)模型和理解二次函數(shù)的有關(guān)概念的基礎(chǔ)上進行的,它既是前面所學(xué)知識的應(yīng)用、拓展,是對前面所學(xué)一次函數(shù)、反比例函數(shù)圖像與性質(zhì)的一次升華,又是今后學(xué)習(xí)《確定二次函數(shù)的表達式》《二次函數(shù)的應(yīng)用》、《二次函數(shù)與一元二次方程》的預(yù)備知識,又是學(xué)生高中階段數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)知識,它在教材中起著非常重要的作用。另外,本節(jié)課最大特點,是結(jié)合圖形來研究二次函數(shù)的性質(zhì),這充分體現(xiàn)了一個很重要的數(shù)學(xué)思想——數(shù)形結(jié)合數(shù)學(xué)思想。因此,這一節(jié)課,無論是在知識上,還是對學(xué)生動手能力培養(yǎng)上都有著十分重要的作用。
二、教學(xué)目標(biāo)及重、難點分析
通過分析,我們知道,《二次函數(shù)的圖像與性質(zhì)》在整個教材體系中,起著承上啟下的作用,有著廣泛的應(yīng)用。我認為這節(jié)課的重點是:作出函數(shù)=ax2+c的圖象,比較函數(shù)=ax2和函數(shù)=ax2+c的異同,了解它們的性質(zhì);函數(shù)=ax2+c的圖象與性質(zhì)的理解,掌握拋物線的上下平移規(guī)律是本節(jié)課的難點。
知識與技能目標(biāo)
(1)會做函數(shù)=ax2和=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點坐標(biāo);
(2)了解拋物線=ax2上下平移規(guī)律。
過程與方法目標(biāo)
本節(jié)課,過程是由抽象到直觀,再由直觀到抽象(既二次函數(shù)=ax2+c的關(guān)系式——作出圖像——說出二次函數(shù)=ax2+c的圖像與性質(zhì)),培養(yǎng)學(xué)生分析問題、解決問題的能力,培養(yǎng)學(xué)生觀察、探討、分析、分類討論的能力。
情感、態(tài)度與價值觀
引導(dǎo)學(xué)生養(yǎng)成全面看問題、分類討論的學(xué)習(xí)習(xí)慣,通過直觀多媒體演示和學(xué)生動手作圖、分析,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
三、教學(xué)結(jié)構(gòu)設(shè)計
建立以“實施主體性教學(xué),培養(yǎng)學(xué)生自主探究的能力”為主的課堂教學(xué)結(jié)構(gòu)模式——學(xué)教結(jié)合式。讓學(xué)生先自己動手畫圖,然后由老師來演示,這樣從直觀的看圖觀察,思考,提問,容易激發(fā)學(xué)生的求知欲望,調(diào)動學(xué)生學(xué)習(xí)的興趣。以“學(xué)教結(jié)合”為模式的課堂結(jié)構(gòu)設(shè)計為“三個階段”:
①準備階段教師先從回憶函數(shù)=ax2圖象與性質(zhì),從而導(dǎo)入二次函數(shù)=ax2+c的圖像與性質(zhì),進而帶出本節(jié)課的學(xué)習(xí)目標(biāo)。
②參與階段學(xué)生圍繞目標(biāo)自我表現(xiàn),相互交流,啟發(fā)理解。
③應(yīng)用與升華階段這一階段是讓學(xué)生從“學(xué)會”到“會學(xué)”的升華。延伸階段要做到“三化”,一是知識的深化,二是知識向能力、技能的轉(zhuǎn)化,三是學(xué)習(xí)方法的固化,即演練鞏固,牢固掌握其方法。
一、教材分析
冪函數(shù)是學(xué)生在系統(tǒng)學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本初等函數(shù)。是對函數(shù)概念及性質(zhì)的應(yīng)用,能進一步培養(yǎng)利用函數(shù)的性質(zhì)(定義域、值域、圖像、奇偶性、單調(diào)性)研究一個函數(shù)的意識。因而本節(jié)課更是一個對學(xué)生研究函數(shù)的方法和能力的綜合提升。從概念到圖象(),利用這五個函數(shù)的圖象探究其定義域、值域、奇偶性、單調(diào)性、公共點,概括、歸納冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生從特殊到一般再到特殊的一般認知規(guī)律。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,以便能將該方法遷移到對其他函數(shù)的研究。
二、教學(xué)目標(biāo)分析
依據(jù)課程標(biāo)準,結(jié)合學(xué)生的認知發(fā)展水平和心理特征,確定本節(jié)課的教學(xué)目標(biāo)如下:
[知識與技能]使學(xué)生了解冪函數(shù)的定義,會畫常見冪函數(shù)的圖象,掌握冪函數(shù)的圖象和性質(zhì),初步學(xué)會運用冪函數(shù)解決問題,進一步體會數(shù)形結(jié)合的思想。
[過程與方法]引入、剖析、定義冪函數(shù)的過程,啟動觀察、分析、抽象概括等思維活動,培養(yǎng)學(xué)生的思維能力,體會數(shù)學(xué)概念的學(xué)習(xí)方法;通過運用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動探索冪函數(shù)性質(zhì),體會學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗成功的樂趣;對冪函數(shù)的性質(zhì)歸納、總結(jié)時培養(yǎng)學(xué)生抽象概括和識圖能力;運用性質(zhì)解決問題時,進一步強化數(shù)形結(jié)合思想。
[情感、態(tài)度與價值觀]通過生活實例引出冪函數(shù)概念,使學(xué)生體會生活中處處有數(shù)學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。通過本節(jié)課的學(xué)習(xí),使學(xué)生進一步加深研究函數(shù)的規(guī)律和方法;提高學(xué)生的學(xué)習(xí)能力;養(yǎng)成積極主動,勇于探索,不斷創(chuàng)新的學(xué)習(xí)習(xí)慣和品質(zhì);樹立學(xué)科學(xué),愛科學(xué),用科學(xué)的精神。
三、重、難點分析
[教學(xué)重點]
(1)冪函數(shù)的定義與性質(zhì);
(2)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)的影響。從知識體系看,前面有指數(shù)函數(shù)與對數(shù)函數(shù)的學(xué)習(xí),后面有其他函數(shù)的研究,本節(jié)課的學(xué)習(xí)具有承上啟下的作用;就知識特點而言,蘊涵豐富的數(shù)學(xué)思想方法;就能力培養(yǎng)來說,通過學(xué)生對冪函數(shù)性質(zhì)的歸納,可培養(yǎng)學(xué)生類比、歸納概括能力,運用數(shù)學(xué)語言交流表達的能力。
[教學(xué)難點]
(1)指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響。
(2)數(shù)形結(jié)合解決大小比較以及求參數(shù)的問題。從學(xué)生認知發(fā)展看,他們具備一定的學(xué)習(xí)新函數(shù)的能力,可以通過學(xué)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù)的方法來類比,但畢竟冪函數(shù)在三種初等函數(shù)中是最難的,因為它分類的情況很多,且性質(zhì)多而復(fù)雜,我采用讓學(xué)生自己利用計算機作出函數(shù)的圖像,從中歸納性質(zhì)的方法來突破難點。
四、學(xué)情與教法分析
1.學(xué)情分析
從學(xué)生思維特點來和認知結(jié)構(gòu)看,前面學(xué)生已經(jīng)學(xué)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù),對新函數(shù)的學(xué)習(xí)已經(jīng)有了一定的經(jīng)驗。一方面可以把本節(jié)課與前面的指數(shù)函數(shù)與對數(shù)函數(shù)進行類比學(xué)習(xí),但另一方面本節(jié)課分類情況多,性質(zhì)歸納困難,尤其是三個函數(shù)放在一起可能產(chǎn)生混淆。對進入高中半個學(xué)期的學(xué)生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹?shù)奶攸c,對問題解決的一般性思維過程認識比較模糊。
2.教法分析
學(xué)生思維活躍,求知欲強,但在思維習(xí)慣上還有待教師引導(dǎo)從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下創(chuàng)設(shè)疑問,通過合作交流,共同探索,逐步解決問題。采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法,充分利用多媒體輔助教學(xué)。通過教師點撥,啟發(fā)學(xué)生主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現(xiàn)和接受。
3.教學(xué)構(gòu)想
新課標(biāo)的要求是通過實例,了解y=x,的圖像,了解它們的變化情況。而原數(shù)學(xué)教學(xué)大綱要求掌握冪函數(shù)的概念及其圖像和性質(zhì),在考查掌握函數(shù)性質(zhì)和運用性質(zhì)解決問題時,所涉及的冪函數(shù)f(x)=xα中α限于在集合{-2,-1,-,1,2,3}中取值。新課標(biāo)無論從內(nèi)容的容量和難度上都要遠低于舊課標(biāo)。而蘇教版的教材嚴格按照新課標(biāo)要求處理此部分內(nèi)容,內(nèi)容體系均未超出課標(biāo)要求。所以我們應(yīng)以新課標(biāo)為準繩,控制難度與要求。由于本節(jié)課的難點在于指數(shù)α的變化對冪函數(shù)y=xα(α∈R)性態(tài)的影響,本身冪函數(shù)比較抽象,所以我采用在多媒體教室讓學(xué)生用Excel來模擬得到圖象,再從圖象上觀察、歸納函數(shù)的性質(zhì)。從心理學(xué)上講,自己經(jīng)歷知識的發(fā)生發(fā)展過程,印象更深刻,學(xué)生容易接受與理解。
一、教材分析
本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會知識之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質(zhì)。
二、學(xué)情分析
本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對一般式向頂點式的轉(zhuǎn)化,讓學(xué)上體會化歸思想,分析這兩個式子的區(qū)別。
三、教學(xué)目標(biāo)
(一)知識與能力目標(biāo)
1.經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)的過程;
2.能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點坐標(biāo)和對稱軸。
(二)過程與方法目標(biāo)
通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會探索新知的方式和方法。
(三)情感態(tài)度與價值觀目標(biāo)
1.經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)的過程,滲透配方和化歸的思想方法;
2.在運用二次函數(shù)的知識解決問題的過程中,親自體會到學(xué)習(xí)數(shù)學(xué)知識的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識的興趣并獲得成功的體驗。
四、教學(xué)重難點
1.重點
通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點坐標(biāo)。
2.難點
二次函數(shù)y=ax2+bx+c(a≠0)的圖像的性質(zhì)。
五、教學(xué)策略與設(shè)計說明
本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對比一般式和頂點式的區(qū)別和聯(lián)系;體會式子的恒等變形的重要意義。
六、教學(xué)過程
教學(xué)環(huán)節(jié)(注明每個環(huán)節(jié)預(yù)設(shè)的時間)
(一)提出問題(約1分鐘)
教師活動:形如y=a(x-h)2+k(a≠0)的拋物線的對稱軸、頂點坐標(biāo)分別是什么?那么對于一般式y(tǒng)=ax2+bx+c(a≠0)頂點坐標(biāo)和對稱軸又怎樣呢?圖像又如何?
學(xué)生活動:學(xué)生快速回答出第一個問題,第二個問題引起學(xué)生的思考。
目的:由舊有的知識引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)
教師活動:教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點式?然后結(jié)合頂點式確定其頂點和對稱軸。
學(xué)生活動:討論解決
目的:激發(fā)興趣
2.配方求解頂點坐標(biāo)和對稱軸(約5分鐘)
教師活動:教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教師還應(yīng)強調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。
學(xué)生活動:學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯的地方。
目的:即加深對本課知識的認知有增強了配方法的應(yīng)用意識。
3.畫出該二次函數(shù)圖像(約5分鐘)
教師活動:提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的平移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時是否用平滑的曲線,對稱性如何。
學(xué)生活動:學(xué)生通過列表、描點、連線結(jié)合二次函數(shù)圖像的對稱性完成作圖。
目的:強化二次函數(shù)圖像的畫法。即確定開口方向、頂點坐標(biāo)、對稱軸結(jié)合圖像的對稱性完成圖像。
4.探究y=-2x2-4x+1的函數(shù)圖像特點(約3分鐘)
教師活動:教師提出問題。找學(xué)生板演拋物線的開口方向、頂點和對稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。
學(xué)生活動:學(xué)生獨立完成。
目的:研究a<0時一個具體函數(shù)的圖像和性質(zhì),體會研究二次函數(shù)圖像的一般方法。
5.結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)
教師活動:教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點、對稱軸和開口方向并著重討論分析a>0和a<0時,y隨x的變化情況、拋物線與y的交點以及函數(shù)的最值如何。
學(xué)生活動:仔細理解記憶一般式中的頂點坐標(biāo)、對稱軸和開口方向;理解y隨x的變化情況。
目的:體會由特殊到一般的過程。體驗、觀察、分析二次函數(shù)圖像和性質(zhì)。
6.簡單應(yīng)用(約11分鐘)
教師活動:教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點坐標(biāo)、對稱軸圖像和y軸的交點坐標(biāo)并確定y隨x的變化情況和最值。
教師巡視,個別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對稱軸,然后將對稱軸代入到原函數(shù)解析式求其函數(shù)值,此時對稱軸數(shù)值和所求出的函數(shù)值即為頂點的橫、縱坐標(biāo)。
學(xué)生活動:學(xué)生先獨立完成,約3分鐘后討論交流,最后形成結(jié)論。
目的:鞏固新知
課堂小結(jié)(2分鐘)
1.本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識上的問題?
2.你對本節(jié)課有什么感想或疑惑?
布置作業(yè)(1分鐘)
1.教科書習(xí)題22.1第6,7兩題;
2.《課時練》本節(jié)內(nèi)容。
板書設(shè)計
提出問題畫函數(shù)圖像學(xué)生板演練習(xí)
例題配方過程
到頂點式的配方過程一般式相關(guān)知識點
教學(xué)反思
在教學(xué)中我采用了合作、體驗、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗知識的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個教學(xué)過程主要分為三部分:第一部分是知識回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達到了學(xué)習(xí)目標(biāo)中的要求。
我認為優(yōu)點主要包括:
1.教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。
2.教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實。
3.板書字體端正,格式清晰明了,突出重點、難點。
4.我覺的精彩之處是求一般式的頂點坐標(biāo)時的第二種方法,給學(xué)生減輕了一些負擔(dān),不一定非得配方或運用公式求頂點坐標(biāo)。
所以我對于本節(jié)課基本上是滿意的。但也有很多需要改進的地方主要表現(xiàn)在:
1.知識的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動中自己引導(dǎo)的較少,時間較短,討論的不夠積極;
2.一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會更深刻;
3.學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。
4.合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光?!敝挥姓嬲炎灾?、探究、合作的學(xué)習(xí)方式落到實處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。
重新去解讀這節(jié)課的話我會注意以上一些問題,再多一些時間給學(xué)生,讓他們?nèi)ンw驗,探究而后形成自己的知識。
一、教材內(nèi)容及設(shè)置依據(jù)
【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學(xué)習(xí)包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應(yīng)用有理數(shù)的加減混合運算,解決實際問題。
【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應(yīng)日常生活準備條件)、可接受性原則(即考慮學(xué)生的認識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。
二、教材的地位和作用
本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強,同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎(chǔ),
特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了
類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。
三、對重點、難點的處理
【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應(yīng)用。為了突出重點,教師應(yīng)盡量從實際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:1、知識鞏固型2、實際應(yīng)用型3、方法多變型4、知識拓展型等。
【對難點的處理】對于難點的處理,因為新教材“強調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)
四、關(guān)于教學(xué)方法的選用
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課可采用的方法:
1、情境體驗:通過教師創(chuàng)設(shè)貼近學(xué)生生活實際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。
2、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。
3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。
五、關(guān)于學(xué)法的指導(dǎo)
“授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實際問題的意識、愿望。
六、課時安排:1課時
教學(xué)程序:
一、復(fù)習(xí)鋪墊:
首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進行速算比賽,看誰做的又對又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。
通過比賽的方式,符合學(xué)生的心理特點,迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。
然后教師與學(xué)生一起對題目進行評判,對優(yōu)勝的學(xué)生進行表揚,對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運算奠定了基礎(chǔ)。
二、新知探索:
1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此時飛機比起飛點高了多少米?
讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:
①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
=1千米=1千米
教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學(xué)
教學(xué)目標(biāo):
1、了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3、通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
教學(xué)建議:
一、教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1、對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。
2、在教學(xué)過程中,應(yīng)使學(xué)生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3、在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學(xué)生分析問題、解決問題的能力。
教學(xué)設(shè)計示例:
一、教學(xué)目標(biāo)
(一)知識教學(xué)點
1、使學(xué)生能利用公式解決簡單的實際問題。
2、使學(xué)生理解公式與代數(shù)式的關(guān)系。
(二)能力訓(xùn)練點
1、利用數(shù)學(xué)公式解決實際問題的能力。
2、利用已知的公式推導(dǎo)新公式的能力。
(三)德育滲透點
數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐。
(四)美育滲透點
數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美。
二、學(xué)法引導(dǎo)
1、數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點。
2、學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計算。
三、重點、難點、疑點及解決辦法
1、重點:利用舊公式推導(dǎo)出新的圖形的計算公式。
2、難點:同重點。
3、疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差。
四、課時安排
1課時
五、教具學(xué)具準備
投影儀,自制膠片。
六、師生互動活動設(shè)計
教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式。
七、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏。
在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題。
板書:公式
師:小學(xué)里學(xué)過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學(xué)生感知用割補法求圖形的面積。
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。
重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。
難點利用數(shù)形結(jié)合的方法驗證公式
教學(xué)方法動手操作,合作探究課型新授課教具投影儀
教師活動學(xué)生活動
情景設(shè)置:
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常??梢缘玫揭恍┯杏玫氖阶印C绹诙慰偨y(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學(xué)生充足的時間和空間進行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時鼓勵學(xué)生在拼圖過程中進行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學(xué)生拿出準備好的硬紙板制作
給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)第95頁第3題
板書設(shè)計
復(fù)習(xí)例1板演
………………
………………
……例2……
………………
………………
教學(xué)后記
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.理解有理數(shù)乘方的意義.
2.掌握有理數(shù)乘方的運算.
(二)能力訓(xùn)練點
1.培養(yǎng)學(xué)生觀察、分析、比較、歸納、概括的能力.
2.滲透轉(zhuǎn)化思想.
(三)德育滲透點:培養(yǎng)學(xué)生勤思、認真和勇于探索的精神.
(四)美育滲透點
把記成,顯示了乘方符號的簡潔美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)探索法,嘗試指導(dǎo),充分體現(xiàn)學(xué)生主體地位.
2.學(xué)生學(xué)法:探索的性質(zhì)→練習(xí)鞏固
三、重點、難點、疑點及解決辦法
1.重點:運算.
2.難點:運算的符號法則.
3.疑點:①乘方和冪的區(qū)別.
②與的區(qū)別.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀、自制膠片.
六、師生互動活動設(shè)計
教師引導(dǎo)類比,學(xué)生討論歸納乘方的概念,教師出示探索性練習(xí),學(xué)生討論歸納乘方的性質(zhì),教師出示鞏固性練習(xí),學(xué)生多種形式完成.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,導(dǎo)入 新課
師:在小學(xué)我們已經(jīng)學(xué)過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?
生:可以記作,讀作的四次方.
師:呢?
生:可以記作,讀作的五次方.
師:(為正整數(shù))呢?
生:可以記作,讀作的次方.
師:很好!把個相乘,記作,既簡單又明確.
【教法說明】教師給學(xué)生創(chuàng)設(shè)問題情境,鼓勵學(xué)生積極參與,大大調(diào)動了學(xué)生學(xué)習(xí)的積極性.同時,使學(xué)生認識到數(shù)學(xué)的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學(xué)生通過類推得到的.
師:在小學(xué)對底數(shù),我們只能取正數(shù).進入中學(xué)以后我們學(xué)習(xí)了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.
生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.
非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).
【教法說明】對于的范圍,是在教師的引導(dǎo)下,學(xué)生積極動腦參與,并且根據(jù)初一學(xué)生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結(jié)出可以取任意有理數(shù).
(二)探索新知,講授新課
1.求個相同因數(shù)的積的運算,叫做乘方.
乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).
注意:乘方是一種運算,冪是乘方運算的結(jié)果.看作是的次方的結(jié)果時,也可讀作的次冪.
鞏固練習(xí)(出示投影1)
(1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;
(2)在中,-2是__________,4是__________,讀作__________或讀作__________;
(3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;
(4)5,底數(shù)是___________,指數(shù)是_____________.
【教法說明】此組練習(xí)是鞏固乘方的有關(guān)概念,及時反饋學(xué)生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.
師:到目前為止,對有理數(shù)業(yè)說,我們已經(jīng)學(xué)過幾種運算?分別是什么?其運算結(jié)果叫什么?
學(xué)生活動:同學(xué)們思考,前后桌同學(xué)互相討論交流,然后舉手回答.
生:到目前為止,已經(jīng)學(xué)習(xí)過五種運算,它們是:
運算:加、減、乘、除、乘方;
運算結(jié)果:和、差、積、商、冪;
教師對學(xué)生的回答給予評價并鼓勵.
【教法說明】注重學(xué)生在認知過程中的思維.主動參與,通過學(xué)生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學(xué)生歸納、總結(jié)的能力.
師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.
學(xué)生活動:學(xué)生積極思考,同桌相互討論,并在練習(xí)本上舉例.
【教法說明】通過學(xué)生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向?qū)W生滲透轉(zhuǎn)化的思想.
2.練習(xí):(出示投影2)
計算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
學(xué)生活動:學(xué)生獨立完成解題過程,請三個學(xué)生板演,教師巡回指導(dǎo),待學(xué)生完成后,師生共同評價對錯,并予以鼓勵.
師:請同學(xué)們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?
先讓學(xué)生獨立思考,教師邊巡視邊做適當(dāng)提示.然后讓學(xué)生討論,老師加入某一小組.
生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.
師:請同學(xué)們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結(jié)論呢?
學(xué)生活動:學(xué)生積極思考,同桌之間、前后桌之間互相討論.
生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.
師:請同學(xué)思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?
生:任何一個數(shù)的偶次冪是非負數(shù).
師:你能把上述結(jié)論用數(shù)學(xué)符號表示嗎?
生:(1)當(dāng)時,(為正整數(shù));
(2)當(dāng)
(3)當(dāng)時,(為正整數(shù));
(4)(為正整數(shù));
(為正整數(shù));
(為正整數(shù),為有理數(shù)).
【教法說明】教師把重點放在教學(xué)情境的設(shè)計上,通過學(xué)生自己探索,獲取知識.教師要始終給學(xué)生創(chuàng)造發(fā)揮的機會,注重學(xué)生參與.學(xué)生通過特殊問題歸納出一般性的結(jié)論,既訓(xùn)練學(xué)生歸納總結(jié)的能力和口頭表達的能力,又能使學(xué)生對法則記得牢,領(lǐng)會的深刻.
學(xué)習(xí)目標(biāo):
1、能用不同的方法探索并了解三角形3個內(nèi)角之間的關(guān)系;;
2、會利用三角形的內(nèi)角和定理解決問題;
3、知道直角三角形的兩個銳角互余的關(guān)系;
4、通過觀察、想象、推理、交流等活動,發(fā)展空間觀念、推理能力和有條理地表達能力。
學(xué)習(xí)重點:
三角形的內(nèi)角和定理
學(xué)習(xí)難點:
三角形內(nèi)角和定理推理和應(yīng)用
教學(xué)過程:
一、情境創(chuàng)設(shè),感悟新知
1、三角形藍和三角形紅見面了,藍炫耀的說:“我的面積比你大,所以我的內(nèi)角和也比你大!”
紅不服氣的說:“那可不好說噢,你自己量量看!”
藍用量角器量了量自己和紅,就不再說話了!
同學(xué)們,你們知道其中的道理嗎?
三角形三個內(nèi)角的和等于180°
2、你有什么方法可以驗證呢?
方法一:度量法。
方法二:剪拼法。
3、你還有其他說明方法嗎?
二、探索規(guī)律,揭示新知
1、議一議:如,3根木條相交得∠1、∠2.若a∥b,則∠1+∠2=。
理由:。
2、操作:把木條a繞點A轉(zhuǎn)動,使它與木條b相交于點C.根據(jù)形,你能說明“三角形3個內(nèi)角的和等于1800”的理由嗎?
3、說理:
(補充說明:也可以轉(zhuǎn)化為平角進行說明。)
4、方法小結(jié):在這里,為了說明的需要,在原來的形上添畫的線叫做輔助線。在平面幾何里,輔助線通常畫成虛線。
5、你還有其他方法說明“三角形3個內(nèi)角的和等于1800”嗎?
(1)
(2)
6、思路總結(jié):為了說明三個角的和為1800,轉(zhuǎn)化為一個平角或同旁內(nèi)角互補,這種轉(zhuǎn)化思想是數(shù)學(xué)中的常用思想方法。
三、嘗試反饋,領(lǐng)悟新知
例1:如,AC、BD相交于點O,∠A與∠B的和等于∠C與∠D的和嗎?為什么?
例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三個內(nèi)角的度數(shù)。
若將條件改為∠A:∠B:∠C=2:3:4,又如何解呢?
四、拓展延伸,運用新知
1、隨堂練習(xí)
2、結(jié)論:直角三角形的兩個銳角互余。
3、鞏固練習(xí):
①、△ABC中,若∠A+∠B=∠C,則△ABC是()
A、銳角三角形B、直角三角形
C、鈍角三角形D、等腰三角形
②、在一個三角形的3個內(nèi)角中,最多能有幾個直角?最多能有幾個鈍角呢?為什么?
③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度數(shù)。
五、課堂小結(jié),內(nèi)化新知
1本節(jié)課你有哪些收獲?
2你還有什么疑問?
六、布置作業(yè),鞏固新知
1、必做題:
習(xí)題7.5第1、2、3、4題。
2、選做題。
如右:試求出中∠1+∠2+∠3的度數(shù)
七、教學(xué)寄語,拓寬課堂
老師寄語:
如果你想學(xué)會游泳,你必須下水;
如果你想成為解題能手,你必須解題。
教學(xué)目標(biāo)
1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會進行加減混合運算;
2.通過學(xué)習(xí)一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;
3.通過加法運算練習(xí),培養(yǎng)學(xué)生的運算能力。
教學(xué)建議
(一)重點、難點分析
本節(jié)課的重點是依據(jù)運算法則和運算律準確迅速地進行有理數(shù)的加減混合運算,難點是省略加號與括號的代數(shù)和的計算.
由于減法運算可以轉(zhuǎn)化為加法運算,所以加減混合運算實際上就是有理數(shù)的加法運算。了解運算符號和性質(zhì)符號之間的關(guān)系,把任何一個含有有理數(shù)加、減混合運算的算式都看成和式,這是因為有理數(shù)加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)知識結(jié)構(gòu)
(三)教法建議
1.通過習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結(jié)、分析學(xué)生在進行有理數(shù)加、減混合運算時常犯的錯誤,以便在這節(jié)課分析習(xí)題時,有意識地幫助學(xué)生改正.
2.關(guān)于“去括號法則”,只要學(xué)生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。這時,稱這個和式為代數(shù)和。再例如
-3-4表示-3、-4兩數(shù)的代數(shù)和,
-4+3表示-4、+3兩數(shù)的代數(shù)和,
3+4表示3和+4的代數(shù)和
等。代數(shù)和概念是掌握有理數(shù)運算的一個重要概念,請老師務(wù)必給予充分注意。
4.先把正數(shù)與負數(shù)分別相加,可以使運算簡便。
5.在交換加數(shù)的位置時,要連同前面的符號一起交換。如
12-5+7應(yīng)變成12+7-5,而不能變成12-7+5。
教學(xué)設(shè)計示例
有理數(shù)的加減混合運算(一)
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.了解:代數(shù)和的概念.
2.理解:有理數(shù)加減法可以互相轉(zhuǎn)化.
3.應(yīng)用:會進行加減混合運算.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生的口頭表達能力及計算的準確能力.
(三)德育滲透點
通過學(xué)習(xí)一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想.
(四)美育滲透點
學(xué)習(xí)了本節(jié)課就知道一切加減法運算都可以統(tǒng)一成加法運算.體現(xiàn)了數(shù)學(xué)的統(tǒng)一美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用嘗試指導(dǎo)法,體現(xiàn)學(xué)生主體地位,每一環(huán)節(jié),設(shè)置一定題目進行鞏固練
習(xí),步步為營,分散難點,解決關(guān)鍵問題.
2.學(xué)生寫法:練習(xí)→尋找簡單的一般性的方法→練習(xí)鞏固.
三、重點、難點、疑點及解決辦法
1.重點:把加減混合運算算式理解為加法算式.
2.難點:把省略括號和的形式直接按有理數(shù)加法進行計算.
四、課時安排
1課時
五、教具學(xué)具準備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
教師提出問題學(xué)生練習(xí)討論,總結(jié)歸納加減混合運算的一般步驟,教師出示練習(xí)題,學(xué)生練習(xí)反饋.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:前面我們學(xué)習(xí)了有理數(shù)的加法和減法,同學(xué)們學(xué)得都很好!請同學(xué)們看以下題目:-9+(+6);(-11)-7.
師:(1)讀出這兩個算式.
(2)“+、-”讀作什么?是哪種符號?
“+、-”又讀作什么?是什么符號?
學(xué)生活動:口答教師提出的問題.
師繼續(xù)提問:(1)這兩個題目運算結(jié)果是多少?
(2)(-11)-7這題你根據(jù)什么運算法則計算的?
學(xué)生活動:口答以上兩題(教師訂正).
師小結(jié):減法往往通過轉(zhuǎn)化成加法后來運算.
【教法說明】為了進行有理數(shù)的加減混合運算,必須先對有理數(shù)加法,特別是有理數(shù)減法的題目進行復(fù)習(xí),為進一步學(xué)習(xí)加減混合運算奠定基礎(chǔ).這里特別指出“+、-”有時表示性質(zhì)符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.
師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學(xué)習(xí)的有理數(shù)的加減混合運算.(板書課題2.7有理數(shù)的加減混合運算(1))
教學(xué)說明:由復(fù)習(xí)的題目巧妙地填“-”號,就變成了今天將學(xué)的加減混合運算內(nèi)容,使學(xué)生更形象、更深刻地明白了有理數(shù)加減混合運算題目組成.
(二)探索新知,講授新課
1.講評(-9)+(-6)-(-11)-7.
(1)省略括號和的形式
師:看到這個題你想怎樣做?
學(xué)生活動:自己在練習(xí)本上計算.
教師針對學(xué)生所做的方法區(qū)別優(yōu)劣.
【教法說明】題目出示后,教師不急于自己講評,而是讓學(xué)生嘗試,給了學(xué)生一個展示自己的機會,這時,有的學(xué)生可能是按從左到右的順序運算,有的同學(xué)可能是先把減法都轉(zhuǎn)化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學(xué)生自己就會尋找到簡單的、一般性的方法.
師:我們對此類題目經(jīng)常采用先把減法轉(zhuǎn)化為加法,這時就成了-9,+6,+11,-7的和,加號通??梢允÷裕ㄌ栆部梢允÷?,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??
學(xué)生活動:先自己練習(xí)嘗試用兩種讀法讀,口答(教師糾正).
【教法說明】教師根據(jù)學(xué)生所做的方法,及時指出最具代表性的方法來給學(xué)生指明方向,在把算式寫成省略括號代數(shù)和的形式后,通過讓學(xué)生練習(xí)兩種讀法,可以加深對此算式的理解,以此來訓(xùn)練學(xué)生的觀察能力及口頭表達能力.
鞏固練習(xí):(出示投影1)
1.把下列算式寫成省略括號和的形式,并把結(jié)果用兩種讀法讀出來.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+()-()-().
2.判斷
式子-7+1-5-9的正確讀法是().
A.負7、正1、負5、負9;
B.減7、加1、減5、減9;
C.負7、加1、負5、減9;
D.負7、加1、減5、減9;
學(xué)生活動:1題兩個學(xué)生板演,兩個學(xué)生用兩種讀法讀出結(jié)果,其他同學(xué)自行演練,然后同桌讀出互相糾正,2題搶答.
【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉(zhuǎn)化成加法運算寫成代數(shù)和的形式,這里特別注意了代數(shù)和形式的兩種讀法.
2.用加法運算律計算出結(jié)果
師:既然算式能看成幾個數(shù)的和,我們可以運用加法的運算律進行計算,通常同號兩數(shù)放在一起分別相加.
-9+6+11-7
=-9-7+6+11.
學(xué)生活動:按教師要求口答并讀出結(jié)果.
鞏固練習(xí):(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
學(xué)生活動:討論后回答.
【教法說明】學(xué)生運用加法交換律時,很可能產(chǎn)生“-9+7+11-6”這樣的錯誤,教師先讓學(xué)生自己去做,然后糾正,又做一組鞏固練習(xí),使學(xué)生牢固掌握運用加法運算律把同號數(shù)放在一起時,一定要連同前面的符號一起交換這一知識點.
師:-9-7+6+11怎樣計算?
學(xué)生活動:口答
[板書]
-9-7+6+11
=-16+17
=1
鞏固練習(xí):(出示投影3)
1.計算(1)-1+2-3-4+5;
(2).
2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
學(xué)生活動:四個同學(xué)板演,其他同學(xué)在練習(xí)本上做.
【教法說明】針對一道例題分成三部分,每一部分都有一組相應(yīng)的鞏固練習(xí),這樣每一步學(xué)生都掌握得較牢固,這時教師一定要總結(jié)有理數(shù)加減混合運算的方法,使分散的知識有相對的集中.
師小結(jié):有理數(shù)加減法混合運算的題目的步驟為:
1.減法轉(zhuǎn)化成加法;
2.省略加號括號;
3.運用加法交換律使同號兩數(shù)分別相加;
4.按有理數(shù)加法法則計算.
(三)反饋練習(xí)
(出示投影4)
計算:(1)12-(-18)+(-7)-15;
(2).
學(xué)生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.
【教法說明】這兩個題目是本節(jié)課的重點.采用測驗的方式來達到及時反饋.
(四)歸納小結(jié)
師:1.怎樣做加減混合運算題目?
2.省略括號和的形式的兩種讀法?
學(xué)生活動:口答.
【教法說明】小結(jié)不是教師單純的總結(jié),而是讓學(xué)生參與回答,在學(xué)生思考回答的過程中將本節(jié)的重點知識納入知識系統(tǒng).
八、隨堂練習(xí)
1.把下列各式寫成省略括號的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.說出式子-3+5-6+1的兩種讀法.
3.計算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作業(yè)
(一)必做題:1.計算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)選做題:(1)當(dāng)時,,,哪個最大,哪個最???
(2)當(dāng)時,,,哪個最大,哪個最小?
十、板書設(shè)計
教學(xué)目的
1. 使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。
教學(xué)重點: 等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點: 簡潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60°。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結(jié)果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對的打“√”,錯的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°?!叭€合一”性質(zhì)在實際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。
五、作業(yè): 1.課本P57第7,9題。
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
12.3.2 等邊三角形(二)
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點:等邊三角形的性質(zhì)和判定方法.
教學(xué)難點:等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個角相等,都等于60°
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點作DE∥BC,交邊AC于E點.
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3. P56頁練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構(gòu)成等腰三角形.這樣的點有多少個?
12.3.2 等邊三角形(三)
教學(xué)過程
一、 復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、 新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁的例子;
4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.
【教材分析】
一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。通過一元二次方程的學(xué)習(xí),可以對已學(xué)過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學(xué)習(xí)可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學(xué)習(xí)一元二次方程對其它學(xué)科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實例,讓學(xué)生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
【教學(xué)目標(biāo)】
1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項及其系數(shù)。
2、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的進一步認識。
【教學(xué)重點與難點】
理解一元二次方程的概念及一般形式,會正確識別一般式中的“項”及“系數(shù)”。
【教法、學(xué)法】
因為學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學(xué)。教學(xué)中力求體現(xiàn)“問題情景---數(shù)學(xué)模型-----概念歸納”的模式。本節(jié)課借助多媒體輔助教學(xué),指導(dǎo)學(xué)生從具體的問題情景中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)方程,從而突破難點。同時學(xué)生在現(xiàn)實的生活情景中,經(jīng)歷數(shù)學(xué)建模,經(jīng)過自主探索和合作交流的學(xué)習(xí)過程,產(chǎn)生積極的情感體驗,進而創(chuàng)造性地解決問題,有效發(fā)揮學(xué)生的思維能力。
【教學(xué)過程】
一、復(fù)習(xí)舊知,類比新知
1、一元一次方程的概念
像這樣的等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是1(一次)的方程叫做一元一次方程
2、一般形式:
是常數(shù)且
設(shè)計意圖:復(fù)習(xí)一元一次方程,讓學(xué)生回憶起一元一次方程的概念,回憶起“項”及“系數(shù)”的概念,通過類比,讓學(xué)生能更好的理解一元二次方程的概念。
二、生活情境,自主學(xué)習(xí)
(1)正方形桌面的面積是2m,設(shè)正方形桌面的邊長是xm,可得方程
(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,設(shè)花圃的寬是xm則花圃的長是m,可得方程
(3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設(shè)這個正方形的邊長是xcm,可得方程
(4)長5米的梯子斜靠在墻上,梯子的底端與墻的距離比梯子的頂端到地面的距離多1m,設(shè)梯子的底端到墻面的距離是xm,可得方程
設(shè)計意圖:因為數(shù)學(xué)來源與生活,所以以學(xué)生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。讓學(xué)生從實際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的`,從而激發(fā)學(xué)生的求知欲望,順利地進入新課。
三、探究學(xué)習(xí):
1、概念得出
討論交流:以上所列方程有哪些共同特征?
設(shè)計意圖:英國一位著名的數(shù)學(xué)教育心理學(xué)家曾說:概念的教學(xué)要從大量實例出發(fā),通過實例幫助完成定義,而不是教定義。讓學(xué)生充分感受所列方程的特點,再通過類比的方法得到定義,從而達到真正理解定義的目的.
2、鞏固概念
下列方程中那些是一元二次方程。
設(shè)計意圖:
這組練習(xí)目的在于鞏固學(xué)生對一元二次方程定義中3個特征的理解.題目的設(shè)置,目的在于進一步加深學(xué)生對定義的掌握,提高學(xué)生對變式的理解能力.此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
3、一元二次方程的一般形式:
設(shè)計意圖:此環(huán)節(jié)讓學(xué)生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項,系數(shù)的概念,從而達到真正理解并掌握的目的.
4.典型例題
例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項
設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解。
5.鞏固練習(xí)
把下列方程化成一元二次方程的一般形式,并寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項
設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解
6、拓展應(yīng)用
(1)、若是關(guān)于x的一元二次方程,則()
p為任意實數(shù)B、p=0C、p≠0D、p=0或1
(2)、若關(guān)于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是
(3)、若方程是關(guān)于x的一元二次方程,則m的值為
設(shè)計意圖:此題讓學(xué)生進行思考,討論,讓學(xué)生進行講解,教師作適當(dāng)歸納,可留疑,讓學(xué)生課下思考。此題需進行分類討論,開拓學(xué)生思維,體現(xiàn)數(shù)學(xué)的嚴謹性。
7.課堂小結(jié)
設(shè)計意圖:小結(jié)反思中,不同學(xué)生有不同的體會,要尊重學(xué)生的個體差異,激發(fā)學(xué)生主動參與意識,.為每個學(xué)生都創(chuàng)造了數(shù)學(xué)活動中獲得活動經(jīng)驗的機會。
【課后作業(yè)】
1、下列方程中哪些是一元二次方程?試說明理由。
2、將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項:
學(xué)習(xí)目標(biāo):
1、使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率的應(yīng)用題;
2、進一步培養(yǎng)學(xué)生分析問題、解決問題的能力。
學(xué)習(xí)重點:
會列一元二次方程解關(guān)于增長率問題的應(yīng)用題。
學(xué)習(xí)難點:
如何分析題意,找出等量關(guān)系,列方程。
學(xué)習(xí)過程:
一、復(fù)習(xí)提問:
列一元二次方程解應(yīng)用題的一般步驟是什么?
二、探索新知
1.情境導(dǎo)入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農(nóng)民脫貧致富的一項戰(zhàn)略措施,某村村長為帶領(lǐng)全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當(dāng)年承包了30畝耕地的還林還草及管理任務(wù),而實際完成的畝數(shù)比承包數(shù)增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務(wù),求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數(shù)為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?
2.合作探究、師生互動
教師引導(dǎo)學(xué)生分析關(guān)于環(huán)保的情境導(dǎo)入問題,這是一個平均增長率問題,它的基數(shù)是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數(shù)是30(1+x),第二次增長后,即2003年實際完成的畝數(shù)是30(1+x)2,而這一年村長完成的畝數(shù)正好是36.3畝.
教師引導(dǎo)學(xué)生運用方程解決問題:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.
②全村坡耕地還林還草為50×36.3=1815(畝),國家將補助糧食1815×500=907500(斤)=90.75(萬斤).
三、例題學(xué)習(xí)
說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計算簡便且直接得出所求。
例、某產(chǎn)品原來每件是600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩降價的百分率相同,求每次降價百分之幾?
(小組合作交流教師點撥)
時間基數(shù)降價降價后價錢
第一次600600x600(1-x)
第二次600(1-x)600(1-x)x600(1-x)2
(由學(xué)生寫出解答過程)
四、鞏固練習(xí)
一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結(jié):
1、善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習(xí):
1.某商品計劃經(jīng)過兩個月的時間將售價提高20%,設(shè)每月平均增長率為x,則列出的方程為()
A.x+(1+x)x=20%B.(1+x)2=20%
C.(1+x)2=1.2D.(1+x%)2=1+20%
2.某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()
3.某種藥劑原售價為4元,經(jīng)過兩次降價,現(xiàn)在每瓶售價為2.56元,問平均每次降低百分之幾?
1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。
2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。
3、三角形的特性:1、物理特性:穩(wěn)定性。如:自行車的三角架,電線桿上的三角架。
4、邊的特性:任意兩邊之和大于第三邊。
5、為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成三角形ABC。
6、三角形的分類:
按照角大小來分:銳角三角形,直角三角形,鈍角三角形。
按照邊長短來分:三邊不等的△,等腰△(等邊三角形或正三角形是特殊的等腰△)。
等邊△的三邊相等,每個角是60度。(頂角、底角、腰、底的概念)
7、三個角都是銳角的三角形叫做銳角三角形。
8、有一個角是直角的三角形叫做直角三角形。
9、有一個角是鈍角的三角形叫做鈍角三角形。
10、每個三角形都至少有兩個銳角;每個三角形都至多有1個直角;每個三角形都至多有1個鈍角。
11、兩條邊相等的三角形叫做等腰三角形。
12、三條邊都相等的三角形叫等邊三角形,也叫正三角形。
13、等邊三角形是特殊的等腰三角形
14、三角形的內(nèi)角和等于180度。四邊形的內(nèi)角和是360°有關(guān)度數(shù)的計算以及格式。
15、圖形的拼組:兩個完全一樣的三角形一定能拼成一個平行四邊形。
16、用2個相同的三角形可以拼成一個平行四邊形。
17、用2個相同的直角三角形可以拼成一個平行四邊形、一個長方形、一個大三角形。
18、用2個相同的等腰的直角的三角形可以拼成一個平行四邊形、一個正方形。一個大的等腰的直角的三角形。
19、密鋪:可以進行密鋪的圖形有長方形、正方形、三角形以及正六邊形等。
教學(xué)目標(biāo)
1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進行簡單的計算.
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價值觀:體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗與喜悅,樹立學(xué)習(xí)自信心.
教學(xué)重難點
教學(xué)重點:
1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋.
2、會運用公式進行簡單的計算.
教學(xué)難點:
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點.
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實驗田的總面積:
①整體看:邊長為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.
(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個等式的結(jié)構(gòu)特點嗎?用自己的語言敘述.
(結(jié)構(gòu)特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運用完全平方公式計算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號,得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計算
練習(xí)2:利用完全平方公式計算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價.也可學(xué)生獨立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們在運用公式時,要注意以下幾點:
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項,不要漏項和寫錯符號;
(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置