高二數(shù)學教案模板范文

| 新華0

通過編寫教案,教師可以明確教學目標、教學內容和教學計劃,以便更好地組織教學,從而提高教學質量和效率。怎么寫出優(yōu)秀的高二數(shù)學教案模板范文?這里給大家分享高二數(shù)學教案模板范文,方便大家學習。

高二數(shù)學教案模板范文篇1

一.說教材

地位及重要性

函數(shù)的單調性一節(jié)屬高中數(shù)學第一冊(上)的必修內容,在高考的重要考查范圍之內。函數(shù)的單調性是函數(shù)的一個重要性質,也是在研究函數(shù)時經常要注意的一個性質,并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應用上都有廣泛的應用。通過對這一節(jié)課的學習,既可以讓學生掌握函數(shù)單調性的概念和證明函數(shù)單調性的步驟,又可加深對函數(shù)的本質認識。也為今后研究具體函數(shù)的性質作了充分準備,起到承上啟下的作用。

教學目標

(1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調性、單調區(qū)間的概念;

(2)了解能用圖形語言正確表述具有單調性的函數(shù)的圖象特征;

(3)明確掌握利用函數(shù)單調性定義證明函數(shù)單調性的方法與步驟;并能用定義證明某些簡單函數(shù)的單調性;

(4)培養(yǎng)學生嚴密的邏輯思維能力、用運動變化、數(shù)形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質;同時讓學生體驗數(shù)學的藝術美,養(yǎng)成用辨證唯物主義的觀點看問題。

教學重難點

重點是對函數(shù)單調性的有關概念的本質理解。

難點是利用函數(shù)單調性的概念證明或判斷具體函數(shù)的單調性。

二.說教法

根據(jù)本節(jié)課的內容及學生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學”的模式。力圖通過提出問題、思考問題、解決問題的過程,讓學生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內化,使書本知識成為自己知識;同時也培養(yǎng)學生的探索精神。

三.說學法

在教學過程中,教師設置問題情景讓學生想辦法解決;通過教師的啟發(fā)點撥,學生的不斷探索,最終把解決問題的核心歸結到判斷函數(shù)的單調性。然后通過對函數(shù)單調性的概念的學習理解,最終把問題解決。整個過程學生學生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學生體驗到了學習數(shù)學的快樂,培養(yǎng)了學生自主學習的能力和以嚴謹?shù)目茖W態(tài)度研究問題的習慣。

四.說過程

通過設置問題情景、課堂導入、新課講授及終結階段的教學中,我力求培養(yǎng)學生的自主學習的能力,以點撥、啟發(fā)、引導為教師職責。

高二數(shù)學教案模板范文篇2

【教學目標】

1.知識與技能

(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的確定性、互異性,無序性,知道常用數(shù)集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過程與方法

通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數(shù)學內容的意識。

3.情態(tài)與價值

在掌握基本概念的基礎上,能夠解決相關問題,獲得數(shù)學學習的成就感,提高學生分析問題和解決問題的能力,培養(yǎng)學生的應用意識。

【重點難點】

1.教學重點:集合的基本概念與表示方法。

2.教學難點:選擇合適的方法正確表示集合。

【教學思路】

通過實例以及學生熟悉的數(shù)集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節(jié)課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環(huán)節(jié)安排。

高二數(shù)學教案模板范文篇3

教學目標

1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

(1)正確理解的定義,了解公比的概念,明確一個數(shù)列是的限定條件,能根據(jù)定義判斷一個數(shù)列是,了解等比中項的概念;

(2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數(shù)及指定的項;

(3)通過通項公式認識的性質,能解決某些實際問題.

2.通過對的研究,逐步培養(yǎng)學生觀察、類比、歸納、猜想等思維品質.

3.通過對概念的歸納,進一步培養(yǎng)學生嚴密的思維習慣,以及實事求是的科學態(tài)度.

教學建議

教材分析

(1)知識結構

是另一個簡單常見的數(shù)列,研究內容可與等差數(shù)列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

(2)重點、難點分析

教學重點是的定義和對通項公式的認識與應用,教學難點在于通項公式的推導和運用.

①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質,但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出的特性,這些是教學的重點.

②雖然在等差數(shù)列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

③對等差數(shù)列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

教學建議

(1)建議本節(jié)課分兩課時,一節(jié)課為的概念,一節(jié)課為通項公式的應用.

(2)概念的引入,可給出幾個具體的例子,由學生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個等差數(shù)列和幾個混在一起給出,由學生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

(3)根據(jù)定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

(4)對比等差數(shù)列的表示法,由學生歸納的各種表示法.啟發(fā)學生用函數(shù)觀點認識通項公式,由通項公式的結構特征畫數(shù)列的圖象.

(5)由于有了等差數(shù)列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

(6)可讓學生相互出題,解題,講題,充分發(fā)揮學生的主體作用.

教學設計示例

課題:的概念

教學目標

1.通過教學使學生理解的概念,推導并掌握通項公式.

2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力.

3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度.

教學重點,難點

重點、難點是的定義的歸納及通項公式的推導.

教學用具

投影儀,多媒體軟件,電腦.

教學方法

討論、談話法.

教學過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學生發(fā)表意見(可能按項與項之間的關系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.

請學生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是,讓學生討論后得出結論:當時,數(shù)列既是等差又是,當時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認識:

2.對定義的認識(板書)

(1)的首項不為0;

(2)的每一項都不為0,即;

問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學式子表示的定義.

是①.在這個式子的寫法上可能會有一些爭議,如寫成,可讓學生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?

式子給出了數(shù)列第項與第項的數(shù)量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

3.的通項公式(板書)

問題:用和表示第項.

①不完全歸納法

.

②疊乘法

,…,,這個式子相乘得,所以.

(板書)(1)的通項公式

得出通項公式后,讓學生思考如何認識通項公式.

(板書)(2)對公式的認識

由學生來說,最后歸結:

①函數(shù)觀點;

②方程思想(因在等差數(shù)列中已有認識,此處再復習鞏固而已).

這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究.同學可以試著編幾道題.

三、小結

1.本節(jié)課研究了的概念,得到了通項公式;

2.注意在研究內容與方法上要與等差數(shù)列相類比;

3.用方程的思想認識通項公式,并加以應用.

四、作業(yè)(略)

五、板書設計

1.等比數(shù)列的定義

2.對定義的認識

3.等比數(shù)列的通項公式

(1)公式

(2)對公式的認識

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個厚度超過了世界的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(用對數(shù)算也行).

高二數(shù)學教案模板范文篇4

教材分析

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎,為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預見、解決問題的能力。

學情分析

通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

教學目標

1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

3、能運用提公因式法、公式法進行綜合運用。

4、通過活動4,能將高偶指數(shù)冪轉化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。

教學重點和難點

重點:靈活運用平方差公式進行分解因式。

難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

高二數(shù)學教案模板范文篇5

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自普通高中課程標準實驗教科書數(shù)學必修5第3章第3節(jié)內容。教學對象為高二學生,本節(jié)課為第一課時,重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學習了不等關系和掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續(xù)進一步了解不等式的性質及運用,研究最值問題奠定基礎。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,它也是對學生進行情感價值觀教育的好素材,所以基本不等式應重點研究。

【教學目標】

依據(jù)《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標:

知識與技能目標:理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學會構造條件使用基本不等式;

過程與方法目標:通過探究基本不等式,使學生體會知識的形成過程,培養(yǎng)分析、解決問題的能力;

情感與態(tài)度目標:通過問題情境的設置,使學生認識到數(shù)學是從實際中來,培養(yǎng)學生用數(shù)學的眼光看世界,通過數(shù)學思維認知世界,從而培養(yǎng)學生善于思考、勤于動手的良好品質。

【教學重難點】

重點:理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。

難點:利用基本不等式推導不等式.

關鍵是對基本不等式的理解掌握.

二、教法分析

本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導、講練結合的教學方法,以學生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學生探究思索。利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率.

三、學法指導

新課改的精神在于以學生的發(fā)展為本,把學習的主動權還給學生,倡導積極主動,勇于探索的學習方法,因此,本課主要采取以自主探索與合作交流的學習方式,通過讓學生想一想,做一做,用一用,建構起自己的知識,使學生成為學習的主人。

四、教學過程

教學過程設計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調過程,符合學生的認知規(guī)律,使數(shù)學教學過程成為學生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學生的創(chuàng)新意識。

高二數(shù)學教案模板范文篇6

教學目標

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質及運算律;

3.了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數(shù)量積定義

教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ

五,課堂小結

(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

六、課后作業(yè)

P107習題2.4A組2、7題

課后小結

(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后習題

作業(yè)

P107習題2.4A組2、7題

高二數(shù)學教案模板范文篇7

一、設計構思

1、設計理念

注重發(fā)展學生的創(chuàng)新意識。學生的數(shù)學學習活動不應只限于接受、記憶、模仿和練習,倡導學生積極主動探索、動手實踐與相互合作交流的數(shù)學學習方式。這種方式有助于發(fā)揮學生學習主動性,使學生的學習過程成為在教師引導下的“再創(chuàng)造”過程。我們應積極創(chuàng)設條件,讓學生體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,發(fā)展他們的創(chuàng)新意識。

注重提高學生數(shù)學思維能力。課堂教學是促進學生數(shù)學思維能力發(fā)展的主陣地。問題解決是培養(yǎng)學生思維能力的主要途徑。所設計的問題應有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等教學活動。內容的呈現(xiàn)應采用不同的表達方式,以滿足多樣化的學習需求。伴隨新的問題發(fā)現(xiàn)和問題解決后成功感的滿足,由此刺激學生非認知深層系統(tǒng)的良性運行,使其產生“樂學”的余味,學生學習的積極性與主動性在教學中便自發(fā)生成。本節(jié)主要安排應用類比法進行探討,加深學生對類比法的體會與應用。

注重學生多層次的發(fā)展。在問題解決的探究過程中應體現(xiàn)“以人為本”,充分體現(xiàn)“人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學”,“不同的人在數(shù)學上得到不同的發(fā)展”的教學理念。有意義的數(shù)學學習必須建立在學生的主觀愿望和知識經驗基礎之上,而學生的基礎知識和學習能力是多層次的,所以設計的問題也應有層次性,使各層次學生都得到發(fā)展。

注重信息技術與數(shù)學課程的整合。高中數(shù)學課程應盡量使用科學型計算器,各種數(shù)學教育技術平臺,加強數(shù)學教學與信息技術的結合,鼓勵學生運用計算機、計算器等進行探索和發(fā)現(xiàn)。

另外,在數(shù)學教學中,強調數(shù)學本質的同時,也讓學生通過適度的形式化,較好的理解和使用數(shù)學概念、性質。

2、教材分析

冪函數(shù)是江蘇教育出版社普通高中課程標準實驗教科書數(shù)學(必修1)第二章第四節(jié)的內容。該教學內容在人教版試驗修訂本(必修)中已被刪去。標準將該內容重新提出,正是考慮到冪函數(shù)在實際生活的應用。故在教學過程及后繼學習過程中,應能夠讓學生體會其實際應用?!稑藴省穼绾瘮?shù)限定為五個具體函數(shù),通過研究它們來了解冪函數(shù)的性質。其中,學生在初中已經學習了y=x、y=x2、y=x-1等三個簡單的冪函數(shù),對它們的圖象和性質已經有了一定的感性認識?,F(xiàn)在明確提出冪函數(shù)的概念,有助于學生形成完整的知識結構。學生已經了解了函數(shù)的基本概念、性質和圖象,研究了兩個特殊函數(shù):指數(shù)函數(shù)和對數(shù)函數(shù),對研究函數(shù)已經有了基本思路和方法。因此,教材安排學習冪函數(shù),除內容本身外,掌握研究函數(shù)的一般思想方法是另一目的,另外應讓學生了解利用信息技術來探索函數(shù)圖象及性質是一個重要途徑。該內容安排一課時。

3、教學目標的確定

鑒于上述對教材的分析和新課程的理念確定如下教學目標:

⑴掌握冪函數(shù)的形式特征,掌握具體冪函數(shù)的圖象和性質。

⑵能應用冪函數(shù)的圖象和性質解決有關簡單問題。

⑶加深學生對研究函數(shù)性質的基本方法和流程的經驗。

⑷培養(yǎng)學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

⑸滲透辨證唯物主義觀點和方法論,培養(yǎng)學生運用具體問題具體分析的方法分析問題、解決問題的能力。

4、教學方法和教具的選擇

基于對課程理念的理解和對教材的分析,運用問題情境可以使學生較快的進入數(shù)學知識情景,使學生對數(shù)學知識結構作主動性的擴展,通過問題的導引,學生對數(shù)學問題探究,進行數(shù)學建構,并能運用數(shù)學知識解決問題,讓學生有運用數(shù)學成功的體驗。本課采用教師在學生原有的知識經驗和方法上,引導學生提出問題、解決問題的教學方法,體現(xiàn)以學生為主體,教師主導作用的教學思想。

教具:多媒體。制作多媒體課件以提高教學效率。

5、教學重點和難點

重點是從具體冪函數(shù)歸納認識冪函數(shù)的一些性質并作簡單應用。

難點是引導學生概括出冪函數(shù)性質。

6、教學流程

基于新課程理念在教學過程中的體現(xiàn),教學流程的基線為:

考慮到學生已經學習了指數(shù)函數(shù)與對數(shù)函數(shù),對函數(shù)的學習、研究有了一定的經驗和基本方法,所以教學流程又分兩條線,一條以內容為明線,另一條以研究函數(shù)的基本內容和方法為暗線,教學過程中同時展開。

明線:

暗線:

二、實施方案

問題導引師生活動設計意圖

問題情境⑴寫出下列y關于x的函數(shù)解析式:

①正方形邊長x、面積y

②正方體棱長x、體積y

③正方形面積x、邊長y

④某人騎車x秒內勻速前進了1km,騎車速度為y

⑤一物體位移y與位移時間x,速度1m/s

學生口答,教師板書答案?;脽羝菔締栴}。

由具體問題入手,從熟悉的情景引入,提高學生的參與程度。符合學生認識特點。

⑵上述函數(shù)解析式有什么共同特征?是否為指數(shù)函數(shù)?學生相互討論,必要時,教師將解析式寫成指數(shù)冪形式,以啟發(fā)學生歸納。投影演示定義。引導學生觀察,訓練學生歸納能力。并與前面知識進行區(qū)分,以進一步幫助學生明晰概念。

⑶判別下列函數(shù)中有幾個冪函數(shù)?

①y=②y=2x2③y=x④y=x2+x⑤y=-x3

學生獨立思考,回答。學生鑒別?;脽羝菔绢}目。

鞏固概念,強化學生對概念形式特征的把握。

⑷冪函數(shù)具有哪些性質?研究函數(shù)應該是哪些方面的內容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內容?

學生討論,教師引導。學生回答。

引導學生回想前面學習指數(shù)函數(shù)與對數(shù)函數(shù)的研究內容和過程。啟發(fā)學生用類比思想進行研究冪函數(shù)。

⑸冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?學生小組討論,得到結論。引導學生舉例研究。結論:冪指數(shù)不同,定義域并不完全相同,應區(qū)別對待。

激發(fā)學生探討的欲望,提高學生主動參與程度。

⑹寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x

學生解答,并歸納解決辦法。引導學生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。(幻燈片演示)引導學生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應具體分析。

⑺上述函數(shù)的單調性如何?如何判斷?

學生思考:作圖引發(fā)學生作圖研究函數(shù)性質的興趣。函數(shù)單調性的判斷,既可以使用定義,也可以通過圖象解決,直觀,易理解。

⑻在同一坐標系內作出上述函數(shù)的圖象。學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示(附圖1)通過超級鏈接幾何畫板演示。訓練學生作圖的基本功,加強學生的實踐,讓學生在自己的經驗中認識冪函數(shù)的圖象。避免教師直接使用計算機演示圖象,剝奪學生動手的機會。

⑼上述函數(shù)圖象有哪些共同點?學生討論,總結。教師引導。可將學生已熟悉的函數(shù)y=,y=x一同投影,幫助學生觀察。(投影演示結論)

訓練學生觀察分析能力。

⑽回答第7個問題。

學生思考,回答。教師注意學生敘述的嚴密。訓練學生的語言敘述能力。再次體會與指數(shù)函數(shù)、對數(shù)函數(shù)性質的區(qū)別。體會冪指數(shù)的不同情況對函數(shù)單調性的影響。

⑾圖象之間有什么區(qū)別?特別是在分布上。與常數(shù)有什么聯(lián)系?

教師通過幾何畫板演示圖象在第一象限內的變化規(guī)律,以驗證學生猜想。通過超級鏈接幾何畫板演示。(附圖2)

這是較高要求,可以讓學生自由猜想和發(fā)言。進一步提高學生觀察,歸納能力。

⑿鞏固練習寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調性:①y=x②y=x③y=x。

學生獨立思考并回答。

訓練學生自覺運用冪函數(shù)圖象性質的基本規(guī)律。

⒀簡單應用1:比較下列各組中兩個值的大小,并說明理由:

①0.75,0.76;

②(-0.95),(-0.96);

③0.23,0.24;

④0.31,0.31

學生思考,作答,教師引導學生敘述語言的邏輯性。

訓練學生用函數(shù)性質進行解釋,強化學生邏輯意識。其中第④小題是利用指數(shù)函數(shù)性質解決,注意區(qū)別。

⒁請學生考慮可以如何驗證上述答案的正確。

學生實踐。使用計算器驗證,提高學生使用學習工具的意識。

⒂簡單應用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。

學生思考,作答。教師板演。對冪函數(shù)定義進一步鞏固,對函數(shù)性質作初步應用。同時訓練學生對初步答案進行篩選。

⒃簡單應用2:

已知(a+1)<(3-2a),試求a的取值范圍。

學生思考,作答。教師板演。

訓練學生靈活使用性質解題。

數(shù)學交流⒄小結:今天的學習內容和方法有哪些?你有哪些收獲和經驗?學生思考、小組討論,教師引導。讓學生回顧,小結,將對學生形成知識系統(tǒng)產生積極影響。

數(shù)學再現(xiàn)

⒅布置作業(yè):

課本p.732、3、4、思考5思考5作為訓練學生應用數(shù)學于實際的較好例子,應讓能力較好學生得到充分發(fā)展。

幾點說明:

⑴本節(jié)課開始時要注意用相關熟悉例子引入新課。

⑵畫函數(shù)圖象時,如果學生已能夠運用計算器或相關計算機軟件作圖,可以讓學生自己操作,以提高學生探索問題的興趣和能力,并提高教學效率。

⑶由于課程標準對冪函數(shù)的研究范圍有相對限制,故第11個問題要求較高,建議視具體情況選擇教學。

⑷本設計相關課件采用PowerPoint演示文稿,其中部分使用超級鏈接至幾何畫板(4.06版本)進行演示。

高二數(shù)學教案模板范文篇8

教學目標

熟練掌握三角函數(shù)式的求值

教學重難點

熟練掌握三角函數(shù)式的求值

教學過程

【知識點精講】

三角函數(shù)式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數(shù)值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

【課堂小結】

三角函數(shù)式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數(shù)值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

高二數(shù)學教案模板范文篇9

知識結構

重點與難點分析:

本節(jié)課教學方法主要是“自學輔導與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發(fā)現(xiàn)規(guī)律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

(1)由“先教后學”轉向“先學后教

本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。

(2)在層次教學中培養(yǎng)學生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

教法建議:

由“先教后學”轉向“先學后教”

本節(jié)課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現(xiàn)了以“學生為主體”的教育思想。

(2)在層次教學中培養(yǎng)學生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

綜合練習的.多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。

這里注意兩點:

一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。

二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

高二數(shù)學教案模板范文篇10

教學目標

(1)掌握圓的標準方程,能根據(jù)圓心坐標和半徑熟練地寫出圓的標準方程,也能根據(jù)圓的標準方程熟練地寫出圓的圓心坐標和半徑.

(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進行圓的普通方程與參數(shù)方程之間的互化,能應用圓的參數(shù)方程解決有關的簡單問題.

(4)掌握直線和圓的位置關系,會求圓的切線.

(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學建議

教材分析

(1)知識結構

(2)重點、難點分析

①本節(jié)內容教學的重點是圓的標準方程、一般方程、參數(shù)方程的推導,根據(jù)條件求圓的方程,用圓的方程解決相關問題.

②本節(jié)的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

教法建議

(1)圓是最簡單的曲線.這節(jié)教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

(2)在解決有關圓的問題的過程中多次用到配方法、待定系數(shù)法等思想方法,教學中應多總結.

(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養(yǎng)學生運算能力和簡化運算過程的意識.

(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

教學設計示例

圓的一般方程

教學目標:

(1)掌握圓的一般方程及其特點.

(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.

(4)通過本節(jié)課學習,進一步掌握配方法和待定系數(shù)法.

教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

(2)用待定系數(shù)法求圓的方程.

教學難點:圓的一般方程特點的研究.

教學用具:計算機.

教學方法:啟發(fā)引導法,討論法.

教學過程:

【引入】

前邊已經學過了圓的標準方程

把它展開得

任何圓的方程都可以通過展開化成形如

的方程

【問題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

顯然②是不是圓方程與是什么樣的數(shù)密切相關,具體如下:

(1)當時,②表示以為圓心、以為半徑的圓;

(2)當時,②表示一個點;

(3)當時,②不表示任何曲線.

總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

圓的一般方程的定義:

當時,①表示以為圓心、以為半徑的圓,

此時①稱作圓的一般方程.

即稱形如的方程為圓的一般方程.

【問題2】圓的一般方程的特點,與圓的標準方程的異同.

(1)和的系數(shù)相同,都不為0.

(2)沒有形如的二次項.

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標準方程各有千秋:

(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結構,更適合方程理論的運用.

【實例分析】

例1:下列方程各表示什么圖形.

(1);

(2);

一、教學內容分析

向量作為工具在數(shù)學、物理以及實際生活中都有著廣泛的應用.

本小節(jié)的重點是結合向量知識證明數(shù)學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數(shù)學問題,使一些數(shù)學知識有機聯(lián)系,拓寬解決問題的思路.

2、了解構造法在解題中的運用.

三、教學重點及難點

重點:平面向量知識在各個領域中應用.

難點:向量的構造.

四、教學流程設計

五、教學過程設計

一、復習與回顧

1、提問:下列哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數(shù)量積的有關知識.

二、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數(shù)學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發(fā)現(xiàn)(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數(shù)量積的兩個公式得到證明.

二、鞏固練習

1、如圖,某人在靜水中游泳,速度為km/h.

(1)如果他徑直游向河對岸,水的流速為4km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8km/h.

(2)他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結

1、向量在物理、數(shù)學中有著廣泛的應用.

2、要學會從不同的角度去看一個數(shù)學問題,是數(shù)學知識有機聯(lián)系.

四、作業(yè)布置

1、書面作業(yè):課本P73,練習8.44

高二數(shù)學教案模板范文篇11

教學目標

1.了解函數(shù)的單調性和奇偶性的概念,把握有關證實和判定的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調性,單調區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個角度熟悉單調性和奇偶性.

(3)能借助圖象判定一些函數(shù)的單調性,能利用定義證實某些函數(shù)的單調性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調性的證實,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從非凡到一般的數(shù)學思想.

3.通過對函數(shù)單調性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度.

教學建議

一、知識結構

(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點難點分析

(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與熟悉.教學的難點是領悟函數(shù)單調性,奇偶性的本質,把握單調性的證實.

(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證實是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點.

三、教法建議

(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來.

(2)函數(shù)單調性證實的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.

函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

函數(shù)的奇偶性教學設計方案

教學目標

1.使學生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性.

2.在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數(shù)形結合和非凡到一般的思想方法.

3.在學生感受數(shù)學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神.

教學重點,難點

重點是奇偶性概念的形成與函數(shù)奇偶性的判定

難點是對概念的熟悉

教學用具

投影儀,計算機

教學方法

引導發(fā)現(xiàn)法

教學過程

一.引入新課

前面我們已經研究了函數(shù)的單調性

,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質,今天我們繼續(xù)研究函數(shù)的另一個性質.從什么角度呢?將從對稱的角度來研究函數(shù)的性質.

對稱我們大家都很熟悉,在生活中有很多對稱,在數(shù)學中也能發(fā)現(xiàn)很多對稱的問題,大家回憶一下在我們所學的內容中,非凡是函數(shù)中有沒有對稱問題呢?

(學生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數(shù)具體化,如和等.)

結合圖象提出這些對稱是我們在初中研究的關于軸對稱和關于原點對稱問題,而我們還曾研究過關于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數(shù)圖象關于軸對稱的嗎?

學生經過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關于軸對稱.最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律.

二.講解新課

2.函數(shù)的奇偶性(板書)

教師從剛才的圖象中選出,用計算機打出,指出這是關于軸對稱的圖象,然后問學生初中是怎樣判定圖象關于軸對稱呢?(由學生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?

學生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導學生先把它們具體化,再用數(shù)學符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結論,這樣的是不存在的)

從這個結論中就可以發(fā)現(xiàn)對定義域內任意一個,都有成立.最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整.

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內任意一個,都有,那么就叫做偶函數(shù).(板書)

(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)

提出新問題:函數(shù)圖象關于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)

學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內任意一個,都有,那么就叫做奇函數(shù).(板書)

(由于在定義形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

例1.判定下列函數(shù)的奇偶性(板書)

(1);(2);

(3);;

(5);(6).

(要求學生口答,選出12個題說過程)

解:(1)是奇函數(shù).(2)是偶函數(shù).

(3),是偶函數(shù).

前三個題做完,教師做一次小結,判定奇偶性,只需驗證與之間的關系,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數(shù)的問題呢?

學生經過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數(shù).(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)

從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述.即第(4)題中表面成立的=不能經受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

教師由此引導學生,通過剛才這個題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應關于原點對稱,再提出定義域關于原點對稱是函數(shù)具有奇偶性的什么條件?

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論.

(3)定義域關于原點對稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)

由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.

經學生思考,可找到函數(shù).然后繼續(xù)提問:是不是具備這樣性質的函數(shù)的解析式都只能寫成這樣呢?能證實嗎?

例2.已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)(試由學生來完成)

證實:既是奇函數(shù)也是偶函數(shù),

=,且,

=.

,即.

證后,教師請學生記住結論的同時,追問這樣的函數(shù)應有多少個呢?學生開始可能認為只有一個,經教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù).由上可知函數(shù)按其是否具有奇偶性可分為四類

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)

例3.判定下列函數(shù)的奇偶性(板書)

(1);(2);(3).

由學生回答,不完整之處教師補充.

解:(1)當時,為奇函數(shù),當時,既不是奇函數(shù)也不是偶函數(shù).

(2)當時,既是奇函數(shù)也是偶函數(shù),當時,是偶函數(shù).

(3)當時,于是,

當時,,于是=,

綜上是奇函數(shù).

教師小結(1)(2)注重分類討論的使用,(3)是分段函數(shù),當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可.

三.小結

1.奇偶性的概念

2.判定中注重的問題

四.作業(yè)略

五.板書設計

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義

(2)奇函數(shù)定義

(3)定義域關于原點對稱是函數(shù)例2.小結

具備奇偶性的必要條件

(4)函數(shù)按奇偶性分類分四類

探究活動

(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?

(2)判定函數(shù)在上的單調性,并加以證實.

在此基礎上試利用這個函數(shù)的單調性解決下面的問題:

高二數(shù)學教案模板范文篇12

一、教學過程

1.復習。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。

求出函數(shù)y=x3的反函數(shù)。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系?

(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關系嗎?請同學們用其他函數(shù)來試一試。

(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

3.在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高二數(shù)學教案模板范文篇13

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象、恰當?shù)乩枚x__題,許多時候能以簡馭繁、因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率、

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用__解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣、

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義__

高二數(shù)學教案模板范文篇14

●三維目標:

(1)知識與技能:

掌握歸納推理的技巧,并能運用解決實際問題。

(2)過程與方法:

通過“自主、合作與探究”實現(xiàn)“一切以學生為中心”的理念。

(3)情感、態(tài)度與價值觀:

感受數(shù)學的人文價值,提高學生的學習興趣,使其體會到數(shù)學學習的美感。

●教學重點:

歸納推理及方法的總結。

●教學難點:

歸納推理的含義及其具體應用。

●教具準備:

與教材內容相關的資料。

●課時安排:

1課時

●教學過程:

一.問題情境

(1)原理初探

①引入:“阿基米德曾對國王說,給我一個支點,我將撬起整個地球!”

②提問:大家認為可能嗎?他為何敢夸下如此海口?理由何在?

③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?

從而引入兩則小典故:

A:一個小孩,為何輕輕松松就能提起一大桶水?

B:修筑河堤時,奴隸們是怎樣搬運巨石的?

高二數(shù)學教案模板范文篇15

1.本節(jié)課的重點是理解算法的概念,體會算法的思想,難點是掌握簡單問題算法的表述.

2.本節(jié)課要重點掌握的規(guī)律方法

(1)掌握算法的特征,見講1;

(2)掌握設計算法的一般步驟,見講2;

(3)會設計實際問題的算法,見講3.

3.本節(jié)課的易錯點

(1)混淆算法的特征,如講1.

(2)算法語言不規(guī)范致誤,如講3.

課下能力提升(一)

[學業(yè)水平達標練]

題組1算法的含義及特征

1.下列關于算法的說法錯誤的是()

A.一個算法的步驟是可逆的

B.描述算法可以有不同的方式

C.設計算法要本著簡單方便的原則

D.一個算法不可以無止境地運算下去

解析:選A由算法定義可知B、C、D對,A錯.

2.下列語句表達的是算法的有()

①撥本地電話的過程為:1提起話筒;2撥號;3等通話信號;4開始通話或掛機;5結束通話;

②利用公式V=Sh計算底面積為3,高為4的三棱柱的體積;

③x2-2x-3=0;

④求所有能被3整除的正數(shù),即3,6,9,12,….

A.①②B.①②③

C.①②④D.①②③④

解析:選A算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.①②都各表達了一種算法;③只是一個純數(shù)學問題,不是一個明確步驟;④的步驟是無窮的,與算法的有窮性矛盾.

3.下列各式中S的值不可以用算法求解的是()

A.S=1+2+3+4

B.S=12+22+32+…+1002

C.S=1+12+…+110000

D.S=1+2+3+4+…

解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.

題組2算法設計

4.給出下面一個算法:

第一步,給出三個數(shù)x,y,z.

第二步,計算M=x+y+z.

第三步,計算N=13M.

第四步,得出每次計算結果.

則上述算法是()

A.求和B.求余數(shù)

C.求平均數(shù)D.先求和再求平均數(shù)

解析:選D由算法過程知,M為三數(shù)之和,N為這三數(shù)的平均數(shù).

5.(2016?東營高一檢測)一個算法步驟如下:

S1,S取值0,i取值1;

S2,如果i≤10,則執(zhí)行S3,否則執(zhí)行S6;

S3,計算S+i并將結果代替S;

S4,用i+2的值代替i;

S5,轉去執(zhí)行S2;

S6,輸出S.

運行以上步驟后輸出的結果S=()

A.16B.25

C.36D.以上均不對

解析:選B由以上計算可知:S=1+3+5+7+9=25,答案為B.

6.給出下面的算法,它解決的是()

第一步,輸入x.

第二步,如果x<0,則y=x2;否則執(zhí)行下一步.

第三步,如果x=0,則y=2;否則y=-x2.

第四步,輸出y.

A.求函數(shù)y=x2?x<0?,-x2?x≥0?的函數(shù)值

B.求函數(shù)y=x2?x<0?,2?x=0?,-x2?x>0?的函數(shù)值

C.求函數(shù)y=x2?x>0?,2?x=0?,-x2?x<0?的函數(shù)值

D.以上都不正確

解析:選B由算法知,當x<0時,y=x2;當x=0時,y=2;當x>0時,y=-x2.故選B.

7.試設計一個判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關系的算法.

解:算法步驟如下:

第一步,輸入圓心的坐標(a,b)、半徑r和直線方程的系數(shù)A、B、C.

第二步,計算z1=Aa+Bb+C.

第三步,計算z2=A2+B2.

第四步,計算d=z1z2.

第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d

8.某商場舉辦優(yōu)惠促銷活動.若購物金額在800元以上(不含800元),打7折;若購物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折.請為商場收銀員設計一個算法,要求輸入購物金額x,輸出實際交款額y.

解:算法步驟如下:

第一步,輸入購物金額x(x>0).

第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉第四步;否則,執(zhí)行第三步.

第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.

第四步,輸出y,結束算法.

題組3算法的實際應用

9.國際奧委會宣布2020年夏季奧運會主辦城市為日本的東京.據(jù)《中國體育報》報道:對參與競選的5個夏季奧林匹克運動會申辦城市進行表決的操作程序是:首先進行第一輪投票,如果有一個城市得票數(shù)超過總票數(shù)的一半,那么該城市將獲得舉辦權;如果所有申辦城市得票數(shù)都不超過總票數(shù)的一半,則將得票最少的城市淘汰,然后進行第二輪投票;如果第二輪投票仍沒選出主辦城市,將進行第三輪投票,如此重復投票,直到選出一個主辦城市為止,寫出投票過程的算法.

解:算法如下:

第一步,投票.

第二步,統(tǒng)計票數(shù),如果一個城市得票數(shù)超過總票數(shù)的一半,那么該城市就獲得主辦權,否則淘汰得票數(shù)最少的城市并轉第一步.

第三步,宣布主辦城市.

[能力提升綜合練]

1.小明中午放學回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準備面條及佐料2分鐘;④用鍋把水燒開10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進行一道工序.小明要將面條煮好,最少要用()

A.13分鐘B.14分鐘

C.15分鐘D.23分鐘

解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開10分鐘(同時②洗菜6分鐘+③準備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘.解決一個問題的算法不是的,但在設計時要綜合考慮各個方面的因素,選擇一種較好的算法.

2.在用二分法求方程零點的算法中,下列說法正確的是()

A.這個算法可以求方程所有的零點

B.這個算法可以求任何方程的零點

C.這個算法能求方程所有的近似零點

D.這個算法并不一定能求方程所有的近似零點

解析:選D二分法求方程零點的算法中,僅能求方程的一些特殊的近似零點(滿足函數(shù)零點存在性定理的條件),故D正確.

3.(2016?青島質檢)結合下面的算法:

第一步,輸入x.

第二步,判斷x是否小于0,若是,則輸出x+2,否則執(zhí)行第三步.

第三步,輸出x-1.

當輸入的x的值為-1,0,1時,輸出的結果分別為()

A.-1,0,1B.-1,1,0

C.1,-1,0D.0,-1,1

解析:選C根據(jù)x值與0的關系選擇執(zhí)行不同的步驟.

4.有如下算法:

第一步,輸入不小于2的正整數(shù)n.

第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.

第三步,依次從2到n-1檢驗能不能整除n,若不能整除,則n滿足條件.

則上述算法滿足條件的n是()

A.質數(shù)B.奇數(shù)

C.偶數(shù)D.合數(shù)

解析:選A根據(jù)質數(shù)、奇數(shù)、偶數(shù)、合數(shù)的定義可知,滿足條件的n是質數(shù).

5.(2016?濟南檢測)輸入一個x值,利用y=x-1求函數(shù)值的算法如下,請將所缺部分補充完整:

第一步:輸入x;

第二步:________;

第三步:當x<1時,計算y=1-x;

第四步:輸出y.

解析:以x-1與0的大小關系為分類準則知第二步應填當x≥1時,計算y=x-1.

答案:當x≥1時,計算y=x-1

6.已知一個算法如下:

第一步,令m=a.

第二步,如果b<m,則m=b.<p="">

第三步,如果c<m,則m=c.<p="">

第四步,輸出m.

如果a=3,b=6,c=2,則執(zhí)行這個算法的結果是________.

解析:這個算法是求a,b,c三個數(shù)中的最小值,故這個算法的結果是2.

答案:2

7.下面給出了一個問題的算法:

第一步,輸入a.

第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.

第三步,輸出y的值.

問:(1)這個算法解決的是什么問題?

(2)當輸入的a的值為多少時,輸出的數(shù)值最小?最小值是多少?

解:(1)這個算法解決的是求分段函數(shù)

y=2a-1,a≥4,a2-2a+3,a<4的函數(shù)值的問題.

(2)當a≥4時,y=2a-1≥7;

當a<4時,y=a2-2a+3=(a-1)2+2≥2,

∵當a=1時,y取得最小值2.

∴當輸入的a值為1時,輸出的數(shù)值最小為2.

8.“韓信點兵”問題:韓信是漢高祖手下的大將,他英勇善戰(zhàn),謀略超群,為漢朝的建立立下了不朽功勛.據(jù)說他在一次點兵的時候,為保住軍事秘密,不讓敵人知道自己部隊的軍事實力,采用下述點兵方法:①先令士兵從1~3報數(shù),結果最后一個士兵報2;②又令士兵從1~5報數(shù),結果最后一個士兵報3;③又令士兵從1~7報數(shù),結果最后一個士兵報4.這樣韓信很快算出自己部隊里士兵的總數(shù).請設計一個算法,求出士兵至少有多少人.

解:第一步,首先確定最小的滿足除以3余2的正整數(shù):2.

第二步,依次加3就得到所有除以3余2的正整數(shù):2,5,8,11,14,17,20,….

第三步,在上列數(shù)中確定最小的滿足除以5余3的正整數(shù):8.

第四步,然后在自然數(shù)內在8的基礎上依次加上15,得到8,23,38,53,….

第五步,在上列數(shù)中確定最小的滿足除以7余4的正整數(shù):53.

即士兵至少有53人.

515320